The cooling system design for air-cooled turbines is a critical issue in modern gas turbine engineering. Advances in the computational fluid dynamics (CFD) technology and optimization methodology are providing new prospects for turbine cooling system design, in the sense that the optimum cooling system of the vanes and blades could be designed automatically by the optimization search coupled with the full three-dimensional conjugate heat transfer (CHT) analysis. An optimization platform for air-cooled turbines, which consists of the genetic algorithm (GA), a mesh generation tool (Coolmesh), and a CHT solver is presented in this paper. The optimization study was aimed at finding the optimum cooling structure for a 2nd stage vane with, simultaneously, an acceptable metal temperature distribution and limited amount of coolant. The vane was installed with an impingement and pin-fin cooling structure. The optimization search involved the design of the critical parameters of the cooling system, including the size of the impingement tube, diameter and distribution of impingement holes, and the size and distribution of the pin-fin near trailing edge. The design optimization was carried out under two engine operating conditions in order to explore the effects of different boundary conditions. A constant pressure drop was assumed within the cooling system during each optimization. To make the problem computationally faster, the simulations were approached for the interior only (solid and coolant). A weighted function of the temperature distribution and coolant mass flow was used as the objective of the single objective genetic algorithm (SOGA). The result showed that the optimal cooling system configuration with considerable cooling performance could be designed through the SOGA optimization without human interference.

References

References
1.
Dulikravich
,
G. S.
,
Martin
,
T. J.
,
Dennis
,
B. H.
, and
Foster
,
N.
,
1999
, “
Multidisciplinary Hybrid Constrained GA Optimization, Evolutionary Algorithms in Engineering and Computer Science
,”
Recent Advances and Industrial Applications
,
K.
Miettinen
,
M. M.
Makela
,
P.
Neittaanmaki
, and
J.
Periaux
, eds.,
Wiley and Sons
,
New York
.
2.
Martin
,
T. J.
, and
Dulikravich
,
G. S.
,
2001
, “
Aero-Thermo-Elastic Concurrent Optimization of Internally Cooled Turbine Blades
,”
Coupled Field Problems, Series of Advances in Boundary Elements
,
A.
Kassab
and
M.
Aliabadi
, eds.,
WIT
,
Boston, MA
, pp.
137
184
.
3.
Martin
,
T. J.
,
2001
, “
Computer-Automated Multi Disciplinary Analysis and Design Optimization of Internally Cooled Turbine Blades
,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
4.
Talya
,
S. S.
,
Chattopadhyay
,
A.
, and
Rajadas
,
N. J.
,
2002
, “
Multidisciplinary Design Optimization Procedure for Improved Design of a Cooled Gas Turbine Blade
,”
Eng. Optimiz.
,
34
, pp.
175
194
.10.1080/03052150210917
5.
Dennis
,
B.
,
Egorov-Yegorov
,
I.
,
Dulikravich
,
G. S.
, and
Yoshimura
,
S.
,
2003
, “
Optimization of a Large Number Coolant Passages Located Close to the Surface of a Turbine Blade
,”
ASME
Paper No. GT2003-38051.10.1115/GT2003-38051
6.
Dennis
,
B. H.
,
Dulikravich
,
G. S.
,
Egorov-Yegorov
,
I. N.
, and
Yoshimura
,
S.
,
2005
, “
Parallel Optimization of 3-D Turbine Blade Cooling Passages
,”
Evolutionary Design Optimization Methods in Aeronautical and Turbomachinery Engineering
,
G.
Degrez
,
J.
Periaux
, and
M.
Sefrioui
, eds.,
Wiley and Sons
,
New York
.
7.
Haasenritter
,
A.
, and
Weigand
,
B.
,
2004
, “
Optimization of the Rib Structure Inside a 2D Cooling Channel
,”
ASME
Paper No. GT2004-53187.10.1115/GT2004-53187
8.
Ruiz
,
J. D.
,
2008
, “
Thermal Design Optimization of Multi-Passage Internally Cooled Turbine Blades
,” M.S. thesis, University of Texas at Arlington, Arlington, TX.
9.
Amaral
,
S.
,
Verstraete
,
T.
,
Braembussche
,
R. V. D.
, and
Arts
,
T.
,
2008
, “
Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade—Part I: Methodology
,”
ASME
Paper No. GT2008-51077.10.1115/GT2008-51077
10.
Verstraete
,
T.
,
Amaral
,
S.
,
Braembussche
R. V. D.
, and
Arts
,
T.
,
2008
, “
Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade—Part II: Optimization
,”
ASME
Paper No. GT2008-51079.10.1115/GT2008-51079
11.
Nowak
,
G.
, and
Wróblewski
,
W.
,
2009
, “
Cooling System Optimisation of Turbine Guide Vane
,”
Appl. Therm. Eng.
,
29
, pp.
567
572
.10.1016/j.applthermaleng.2008.03.015
12.
Nowak
,
G.
, and
Wróblewski
,
W.
,
2012
, “
Optimization of Blade Cooling System With Use of Conjugate Heat Transfer Approach
,”
Int. J. Therm. Sci.
,
50
, pp.
1770
1781
.10.1016/j.ijthermalsci.2011.04.001
13.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2003-38553.10.1115/GT2003-38553
14.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2004
, “
Conjugate Calculations for a Film-Cooled Blade Under Different Operating Conditions
,”
ASME
Paper No. GT2004-53719.10.1115/GT2004-53719
15.
Coletti
,
F.
,
Scialanga
,
M.
, and
Arts
,
T.
,
2010
, “
Experimental Investigation of Conjugate Heat Transfer in a Rib-Roughened Trailing Edge Channel With Crossing-Jets
,”
ASME
Paper No. GT2010-22432.10.1115/GT2010-22432
16.
Chi
,
Z.
,
Wang
,
S.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Multi Dimensional Platform for Heat Transfer Design of Air-Cooled Turbine Blades
,”
ASME
Paper No. GT2012-68675.10.1115/GT2012-68675
17.
Hylton
,
L. D.
,
Milhec
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes
,” NASA Contractor Report No. 168015.
18.
Ricklick
,
M.
,
2008
, “
Effects of Channel Height and Bulk Temperature Considerations on Heat Transfer Coefficient of Wetted Surfaces in a Single Inline Row Impingement Channel
,”
ASME
Paper No. HT2008-56323.10.1115/HT2008-56323
19.
Ricklick
,
M.
, and
Kapat
,
J. S.
,
2011
, “
Determination of a Local Bulk Temperature Based Heat Transfer Coefficient for the Wetted Surfaces in a Single Inline Row Impingement Channel
,”
ASME J. Turbomach.
,
133
, p.
031008
.10.1115/1.4001227
20.
Ricklick
,
M.
,
Claretti
,
R.
, and
Kapat
,
J. S.
,
2010
, “
Channel Height and Jet Spacing Effect on Heat Transfer and Uniformity Coefficient on an Inline Row Impingement Channel
,”
ASME
Paper No. GT2010-23757.10.1115/GT2010-23757
21.
Panda
,
R. K.
,
Sreekala
,
P.
, and
Prasad
,
B. V. S. S.
,
2010
, “
Computational and Experimental Study of Conjugate Heat Transfer From a Flat Plate With Shower Head Impinging Jets
,”
ASME
Paper No. HT2010-49408.10.1115/HT2010-49408
22.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S.
,
2010
, “
Computational and Experimental Study of Conjugate Heat Transfer From a Flat Plate With an Impinging Jet
,”
ASME
Paper No. HT2010-43994.10.1115/HT2010-43994
23.
Wang
,
T.
,
Lin
,
M.
, and
Bunker
,
R. S.
,
2005
, “
Flow and Heat Transfer of Confined Impingement Jets Cooling Using a 3-D Transient Liquid Crystal Scheme
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4887
4903
.10.1016/j.ijheatmasstransfer.2005.04.020
24.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
25.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
, p.
092201
.10.1115/1.4001633
26.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,” ASME Paper No. HT2001-20250.
27.
Florschuetz
,
L. W.
, and
Metzger
,
D. E.
,
1981
, “
Jet Array Impingement With Cross Flow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,” NASA Contractor Report No. 3373.
28.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley Longman
,
New York
.
You do not currently have access to this content.