This paper discusses the application of different transition-sensitive turbulence closures to the prediction of low-Reynolds-number flows in high-lift cascades operating in low-pressure turbine (LPT) conditions. Different formulations of the well known γ-R˜eθt model are considered and compared to a recently developed transition model based on the laminar kinetic energy (LKE) concept. All those approaches have been coupled to the Wilcox k-ω turbulence model. The performance of the transition-sensitive closures has been assessed by analyzing three different high-lift cascades, recently tested experimentally in two European research projects (Unsteady Transition in Axial Turbomachines (UTAT) and Turbulence and Transition Modeling for Special Turbomachinery Applications (TATMo)). Such cascades (T106A, T106C, and T108) feature different loading distributions, different suction side diffusion factors, and they are characterized by suction side boundary layer separation when operated in steady inflow. Both steady and unsteady inflow conditions (induced by upstream passing wakes) have been studied. Particular attention has been devoted to the treatment of crucial boundary conditions like the freestream turbulence intensity and the turbulent length scale. A detailed comparison between measurements and computations, in terms of blade surface isentropic Mach number distributions and cascade lapse rates will be presented and discussed. Specific features of the computed wake-induced transition patterns will be discussed for selected Reynolds numbers. Finally, some guidelines concerning the computations of high-lift cascades for LPT applications using Reynolds-averaged Navier–Stokes (RANS)/unsteady RANS (URANS) approaches and transition-sensitive closures will be reported.

References

1.
Cobley
,
K.
,
Coleman
,
N.
,
Siden
,
G.
, and
Arndt
,
N.
,
1997
, “
Design of New Three Stage Low Pressure Turbine for the BMW Rolls-Royce BR715 Turbofan Engine
,” ASME Paper No. 97–GT–419.
2.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1997
, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.10.1115/1.2841154
3.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N. W.
, and
Read
,
S.
,
2002
, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
,
124
(
1
), pp.
45
51
.10.1115/1.1415737
4.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Stieger
,
R. D.
,
Schiffer
,
H. P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
,
2002
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High–Lift and Ultra–High–Lift Concepts
,”
ASME J. Turbomach.
,
124
(
3
), pp.
385
392
.10.1115/1.1457455
5.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake–Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.10.1115/1.2841384
6.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2004
, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.10.1115/1.1773850
7.
Banieghbal
,
M. R.
,
Curtis
,
E. M.
,
Denton
,
J. D.
,
Hodson
,
H. P.
,
Huntsman
,
I.
,
Schulte
,
V.
,
Harvey
,
N. W.
, and
Steele
,
A. B.
,
1995
, “
Wake Passing in LP Turbine Blades
,”
AGARD Conference
,
Derby, UK
, May 8–12.
8.
Uzol
,
O.
,
Zhang
,
X. F.
,
Cranstone
,
A.
, and
Hodson
,
H. P.
,
2007
, “
Investigation of Unsteady Wake-Separated Boundary Layer Interaction Using Particle-Image-Velocimetry
,”
ASME
Paper No. GT2007-28099.10.1115/GT2007-28099
9.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2010
, “
Experimental Investigation of Separation and Transition Processes on a High-Lift Low-Pressure Turbine Profile Under Steady and Unsteady Inflow at Low Reynolds Number
,”
J. Therm. Sci.
,
19
(
1
), pp.
26
33
.10.1007/s11630-010-0026-4
10.
Coull
,
J. D.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.10.1115/1.3192149
11.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Ashpis
,
D. E.
,
Volino
,
R. J.
,
Corke
,
T. C.
,
Thomas
,
F. O.
,
Huang
,
J.
,
Lake
,
J. P.
, and
King
,
P. I.
,
2007
, “
A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines Under a Wide Range of Operating Conditions
,”
ASME J. Turbomach.
,
129
(
3
), pp.
527
541
.10.1115/1.2218888
12.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
13.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
14.
Content
,
C.
, and
Houdeville
,
R.
,
2010
, “
Local Correlation-Based Transition Model
,”
8th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements
,
Marseille, France
, June 9–11, pp.
522
527
.
15.
Suluksna
,
K.
,
Dechaumphai
,
P.
, and
Juntasaro
,
E.
,
2009
, “
Correlations for Modeling Transitional Boundary Layers Under Influences of Freestream Turbulence and Pressure Gradient
,”
Int. J. Heat Fluid Flow
,
30
, pp.
66
75
.10.1016/j.ijheatfluidflow.2008.09.004
16.
Babajee
,
J.
, and
Arts
,
T.
,
2012
, “
Investigation of the Laminar Separation-Induced Transition With the γ-R˜eθt Transition Model on Low-Pressure Turbine Rotor Blades at Steady Conditions
,”
ASME
Paper No. GT2012-68687.10.1115/GT2012-68687
17.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.10.1115/1.1622709
18.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2005
, “
Computational Fluid Dynamics Study of Wake-Induced Transition on a Compressor-Like Flat Plate
,”
ASME J. Turbomach.
,
127
(
1
), pp.
52
63
.10.1115/1.1791650
19.
Lardeau
,
S.
,
Leschziner
,
M. A.
, and
Li
,
N.
,
2004
, “
Modelling Bypass Transition With Low-Reynolds-Number Nonlinear Eddy-Viscosity Closure
,”
Flow Turbul. Combust.
,
73
, pp.
49
76
.10.1023/B:APPL.0000044367.24861.b7
20.
Mayle
,
R. E.
, and
Schultz
,
A.
,
1997
, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
(
3
), pp.
405
411
.10.1115/1.2841138
21.
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2006
, “
Modelling of Wake-Induced Transition in Low-Pressure Turbine Cascades
,”
AIAA J.
,
44
(
8
), pp.
1854
1865
.10.2514/1.16470
22.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.10.1115/1.4001237
23.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2012
, “
URANS Analysis of Wake-Induced Effects in High-Lift, Low Reynolds Number Cascade Flows
,”
ASME
Paper No. GT2012-69479.10.1115/GT2012-69479
24.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier–Stokes Solution of Transonic Cascade Flow Using Non–Periodic C–Type Grids
,”
J. Propul. Power
,
8
(
2
), pp.
410
417
.10.2514/3.23493
25.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier–Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.10.1115/1.2840923
26.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.10.2514/6.1991-1596
27.
Rumsey
,
C. L.
,
Thacker
,
W. D.
,
Gatsky
,
T. B.
, and
Grosch
,
C. E.
,
2005
, “
Analysis of Transition-Sensitized Turbulent Equation
,”
AIAA
Paper No. 2005-0523.10.2514/6.2005-523
28.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2 edition,
DCW Ind. Inc.
,
La Canada, CA
.
29.
Lardeau
,
S.
,
Li
,
N.
, and
Leschziner
,
M. A.
,
2007
, “
Large Eddy Simulations of Transitional Boundary Layers at High Free-Stream Turbulence Intensity and Implications for RANS Modeling
,”
ASME J. Turbomach.
,
129
(
2
), pp.
311
317
.10.1115/1.2436896
30.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
(
4
), pp.
668
678
.10.1115/1.2218517
31.
Hatman
,
A.
, and
Wang
,
T.
,
1999
, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
(
3
), pp.
594
602
.10.1115/1.2841357
32.
Hoheisel
,
H.
,
1990
, “
Test Case E/CA-6, Subsonic Turbine Cascade T106, Test Cases for Computation of Internal Flows in Aero Engine Components
,” AGARD-AR-275.
33.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2011
, “
An Assessment of the Laminar Kinetic Energy Concept for the Prediction of High-Lift, Low-Reynolds Number Cascade Flows
,”
Proc. IMechE A: J. Power Energy
,
225
(
7
), pp.
995
1003
.10.1177/0957650911412444
34.
Michálek
,
J.
,
Monaldi
,
M.
, and
Arts
,
T.
,
2012
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Airfoil (T106C) at Low Reynolds and High Mach Number With Effect of Free Stream Turbulence Intensity
,”
ASME J. Turbomach.
,
134
(
6
), p.
061009
.10.1115/1.4006291
35.
Himmel
,
C.
, and
Hodson
,
H.
,
2009
, “
Modifying Ultra-High Lift Low Pressure Turbine Blades for Low Reynolds Number Applications
,” 12 ISUAAAT, London, UK, September 1–4, Paper No. I12-S7-3.
36.
Lodefier
,
K.
, and
Dick
,
E.
,
2006
, “
Modelling of Unsteady Transition in Low-Pressure Turbine Blade Flows With Two Dynamic Intermittency Equations
,”
Flow Turbul. Combust.
,
76
, pp.
103
132
.10.1007/s10494-005-9007-1
You do not currently have access to this content.