This paper presents the application of a viscous adjoint method to the multipoint design optimization of a rotor blade through blade profiling. The adjoint method requires about twice the computational effort of the flow solution to obtain the complete gradient information at each operating condition, regardless of the number of design parameters. NASA Rotor 67 is redesigned through blade profiling. A single point design optimization is first performed to verify the effectiveness and feasibility of the optimization method. Then in order to improve the performance for a wide range of operating conditions, the blade is redesigned at three operating conditions: near peak efficiency, near stall, and near choke. Entropy production through the blade row combined with the constraints of mass flow rate and total pressure ratio is used as the objective function. The design results are presented in detail and the effects of blade profiling on performance improvement and shock/tip-leakage interaction are examined.

References

References
1.
Suder
,
K. L.
, and
Celestina
,
M. L.
,
1996
, “
Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
118
(
2
), pp.
218
229
.10.1115/1.2836629
2.
Van Zante
,
D. E.
,
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Okiishi
,
T. H.
,
2000
, “
Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,” NASA TM 210347.
3.
Kirtley
,
K. R.
,
Beach
,
T. A.
, and
Adamczyk
,
J. J.
,
1990
, “
Numerical Analysis of Secondary Flow in a Two-Stage Turbine
,”
AIAA
Paper No. 1990-2356.10.2514/6.1990-2356
4.
Oyama
,
A.
,
Liou
,
M. S.
, and
Obayashi
,
S.
,
2004
, “
Transonic Axial-Flow Blade Shape Optimization Using Evolutionary Algorithm and Three-Dimensional Navier–Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp. 612–619.10.2514/1.2290
5.
Zhao
,
G.
,
Chen
,
F.
,
Song
,
Y.
, and
Wang
,
Z.
,
2005
, “
Optimization Design of Compressor Cascade With Swept and Curved Blades
,”
AIAA
Paper No. 2005-336.10.2514/6.2005-336
6.
Jang
,
C. M.
,
Samad
,
A.
, and
Kim
,
K. Y.
,
2006
, “
Optimal Design of Swept, Leaned and Skewed Blades in a Transonic Axial Compressor
,”
ASME
Paper No. GT2006-90384.10.1115/GT2006-90384
7.
Samad
,
A.
,
Kim
,
K. Y.
,
Goel
,
T.
,
Haftka
,
R. T.
, and
Shyy
,
W.
,
2008
, “
Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization
,”
J. Propul. Power
,
24
(
2
), pp. 302–310.10.2514/1.28999
8.
Mengistu
,
T.
, and
Ghaly
,
W.
,
2004
, “
Single and Multipoint Shape Optimization of Gas Turbine Blade Cascades
,”
AIAA
Paper No. 2004-4446.10.2514/6.2004-4446
9.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp. 559–565.10.2514/1.2703
10.
Lian
,
Y.
, and
Liou
,
M. S.
,
2005
, “
Multi-Objective Optimization of Transonic Compressor Blade Using Evolutionary Algorithm
,”
J. Propul. Power
,
21
(
6
), pp. 979–987.10.2514/1.14667
11.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Method and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
(
2
), p. 021014.10.1115/1.2950065
12.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp. 233–260.10.1007/BF01061285
13.
Jameson
,
A.
,
2003
, “
Aerodynamic Shape Optimization Using the Adjoint Method
,” (VKI Lecture Series on Aerodynamic Drag Prediction and Reduction), von Karman Institute of Fluid Dynamics, Rhode-St-Genèse, Belgium.
14.
Yang
,
S.
,
Wu
,
H.
, and
Liu
,
F.
,
2003
, “
Aerodynamic Design of Cascades by Using an Adjoint Equation Method
,”
AIAA
Paper No. 2003-1068.10.2514/6.2003-1068
15.
Wu
,
H.
, and
Liu
,
F.
,
2005
, “
Aerodynamic Design of Turbine Blades Using an Adjoint Equation Method
,”
AIAA
Paper No. 2005-1006.10.2514/6.2005-1006
16.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2010
, “
Secondary Flow Reduction by Blade Redesign and Endwall Contouring Using an Adjoint Optimization Method
,”
ASME
Paper No. GT2010-22061.10.1115/GT2010-22061
17.
Luo
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2011
, “
Optimization of Endwall Contours of a Turbine Blade Row Using an Adjoint Method
,”
ASME
Paper No. GT2011-46163.10.1115/GT2011-46163
18.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2011
, “
Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p. 011026.10.1115/1.4001166
19.
Wang
,
D.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multi-Stage Turbomachines—Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p. 021011.10.1115/1.3072498
20.
Wang
,
D.
,
He
,
L.
,
Wells
,
R.
, and
Chen
,
T.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multi-Stage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
,
132
(
2
), p. 021012.10.1115/1.3103928
21.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” NASA TP 2879.
22.
Arnone
,
A.
,
1993
, “
Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method
,” NASA TM 106266.
23.
Puterbaugh
,
S. L.
, and
Brendel
,
M.
,
1997
, “
Tip Clearance Flow-Shock Interaction in a Transonic Compressor Rotor
,”
J. Propul. Power
,
13
(
1
), pp. 24–30.10.2514/2.5146
24.
Chima
,
R. V.
,
1998
, “
Calculation of Tip Clearance Effects in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
120
(
1
), pp. 131–140.10.1115/1.2841374
25.
Hah
,
C.
,
Rabe
,
D. C.
, and
Wadia
,
A. R.
,
2004
, “
Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor
,”
ASME
Paper No. GT2004-53867.10.1115/GT2004-53867
26.
Van Ness
,
D. K.
,
Corke
,
T. C.
, and
Morris
,
S. C.
,
2009
, “
Tip Clearance Flow Control in a Linear Turbine Cascade Using Plasma Actuation
,”
AIAA
Paper No. 2009-300.10.2514/6.2009-300
27.
Biollo
,
R.
, and
Benini
,
E.
,
2009
, “
Shock/Boundary-Layer/Tip-Clearance Interaction in a Transonic Rotor Blade
,”
J. Propul. Power
,
25
(
3
), pp. 668–677.10.2514/1.39541
28.
Kim
,
J. H.
,
Choi
,
K. J.
,
Husain
,
A.
, and
Kim
,
K. Y.
,
2011
, “
Multiobjective Optimization of Circumferential Casing Grooves for a Transonic Axial Compressor
,”
J. Propul. Power
,
27
(
3
), pp. 730–733.10.2514/1.50563
29.
Liu
,
F.
, and
Zheng
,
X.
,
1994
, “
Staggered Finite Volume Scheme for Cascade Flow With a k-ω Turbulence Model
,”
AIAA J.
,
32
(
8
), pp. 1589–1597.10.2514/3.12148
30.
Liu
,
F.
, and
Zheng
,
X.
,
1996
, “
A Strongly-Coupled Time-Marching Method for Solving the Navier–Stokes and k-ω Turbulence Model Equations With Multigrid
,”
J. Comput. Phys.
,
128
(
2
), pp. 289–300.10.1006/jcph.1996.0211
31.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.10.2514/6.1992-0439
32.
Dunham
,
J.
, and
Meauze
,
G.
,
1998
, “
An AGRAD Working Group Study of 3D Navier–Stokes Codes Applied to Single Turbomachinery Blade Rows
,” ASME Paper No. 98-GT-50.
33.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
J. Turbomach.
,
115
(
4
), pp. 621–656.10.1115/1.2929299
34.
Denton
,
J. D.
, and
Xu
,
L.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
ASME
Paper No. GT2002-30327.10.1115/GT2002-30327
You do not currently have access to this content.