The one equation Spalart–Allmaras (SA) turbulence model in an extended modular form is presented. It is employed for the prediction of crosswind flow around the lip of a 90 deg sector of an intake with and without surface roughness. The flow features around the lip are complex. There exists a region of high streamline curvature. For this, the Richardson number would suggest complete degeneration to laminar flow. Also, there are regions of high favorable pressure gradient (FPG) sufficient to laminarize a turbulent boundary layer (BL). This is all terminated by a shock and followed by a laminar separation. Under these severe conditions, the SA model is insensitive to capturing the effects of laminarization and the reenergization of eddy viscosity. The latter promotes the momentum transfer and correct reattachment prior to the fan face. Through distinct modules, the SA model has been modified to account for the effect of laminarization and separation induced transition. The modules have been implemented in the Rolls-Royce HYDRA computational fluid dynamic (CFD) solver. They have been validated over a number of experimental test cases involving laminarization and also surface roughness. The validated modules are finally applied in unsteady Reynolds-averaged Navier–Stokes (URANS) mode to flow around an engine intake and comparisons made with measurements. Encouraging agreement is found and hence advances made towards a more reliable intake design framework.

References

References
1.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
2.
Craft
,
T.
,
Launder
,
B.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
108
115
.10.1016/0142-727X(95)00079-6
3.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2—LES and Hybrids
,”
Progress Aerosp. Sci.
,
47
(
7
), pp.
546
569
.10.1016/j.paerosci.2011.07.002
4.
Loiodice
,
S.
,
Tucker
,
P.
, and
Watson
,
J.
,
2010
, “
Modeling of Coupled Open Rotor Engine Intakes
,”
Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit
,
Orlando, FL
, January 4–7,
AIAA
Paper No. 2010-840.10.2514/6.2010-840
5.
Jefferson-Loveday
,
R. J.
,
Tucker
,
P. G.
,
Nagabhushana Rao
,
V.
, and
Northall
,
J. D.
,
2013
, “
Differential Equation Specification of Integral Turbulence Length Scales
,”
ASME J. Turbomach.
,
135
(
3
),
p. 031013
.10.1115/1.4007479
6.
Kožulović
D.
, and
Lapworth
,
B. L.
,
2009
, “
An Approach for Inclusion of a Nonlocal Transition Model in a Parallel Unstructured Computational Fluid Dynamics Code
,”
ASME J. Turbomach.
,
131
(
3
),
p. 031008
.10.1115/1.2987238
7.
Aupoix
,
B.
, and
Spalart
,
P.
,
2003
, “
Extensions of the Spalart–Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
454
462
.10.1016/S0142-727X(03)00043-2
8.
Shur
,
M.
,
Strelets
,
M.
,
Travin
,
A.
, and
Spalart
,
P.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.10.2514/2.1058
9.
Launder
,
B.
, and
Jones
,
W.
,
1969
, “
Sink Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
38
(
4
), pp.
817
831
.10.1017/S002211206900262X
10.
Warnack
,
D.
, and
Fernholz
,
H. H.
,
1998
, “
The Effects of a Favourable Pressure Gradient and of the Reynolds Number on an Incompressible Axisymmetric Turbulent Boundary Layer. Part 1. The Boundary Layer With Relaminarization
,”
J. Fluid Mech.
,
359
, pp.
357
381
.10.1017/S0022112097008501
11.
Bradshaw
,
P.
,
1969
, “
The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow
,”
J. Fluid Mech.
,
36
(
01
), pp.
177
191
.10.1017/S0022112069001583
12.
Lapworth
,
L.
,
2004
, “
HYDRA CFD: A Framework for Collaborative CFD Development
,”
Proceedings of the 2nd International Conference on Scientific and Engineering Computation (IC-SEC 2004)
,
Singapore, June 30–July 2
.
13.
Mellor
,
G.
, and
Herring
,
H.
,
1968
, “
Two Methods of Calculating Turbulent Boundary Layer Behavior Based on Numerical Solutions of the Equations of Motion
,”
Proceedings of the Computation of Turbulent Boundary Layers Conference, Stanford, CA, August 18–25, Vol. 1, pp. 331–345
.
14.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Proceedings of the AIAA 30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 6–9,
AIAA
Paper No. 92-0439.10.2514/6.1992-439
15.
Rumsey
,
C. L.
, and
Spalart
,
P. R.
,
2009
, “
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
,”
AIAA J.
,
47
(
4
), pp.
982
993
.10.2514/1.39947
16.
van Driest
,
E. R.
,
1956
, “
On Turbulent Flow Near a Wall
,”
AIAA J.
,
23
(
11
), pp.
1007
1011
.10.2514/8.3713
17.
Holzäpfel
,
F.
,
2004
, “
Adjustment of Subgrid-Scale Parameterizations to Strong Streamline Curvature
,”
AIAA J.
,
42
(
7
), pp.
1369
1377
.10.2514/1.6076
18.
Tucker
,
P. G.
,
Rumsey
,
C. L.
,
Spalart
,
P. R.
,
Bartels
,
R. B.
, and
Biedron
,
R. T.
,
2005
, “
Computations of Wall Distances Based on Differential Equations
,”
AIAA J.
,
43
(
3
), pp.
539
549
.10.2514/1.8626
19.
Tucker
,
P.
,
2011
, “
Hybrid Hamilton-Jacobi-Poisson Wall Distance Function Model
,”
Comput. Fluids
,
44
(
1
), pp.
130
142
.10.1016/j.compfluid.2010.12.021
20.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
7th ed.
,
McGraw-Hill
,
New York
.
21.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
Some Properties of Sink-Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
56
(
02
), pp.
337
351
.10.1017/S0022112072002903
22.
Acharya
,
M.
,
Bornstein
,
J.
, and
Escudier
,
M. P.
,
1986
, “
Turbulent Boundary Layers On Rough Surfaces
,”
Exp. Fluids
,
4
(
1
), pp.
33
47
.10.1007/BF00316784
23.
Wakelam
,
C. T.
,
Hynes
,
T. P.
,
Hodson
,
H. P.
,
Evans
,
S. W.
, and
Chanez
,
P.
,
2012
, “
Separation Control for Aeroengine Intakes, Part 2: High-Speed Investigations
,”
J. Propul. Power
,
28
(
4
), pp.
766
772
.10.2514/1.59224
24.
Smits
,
A. J.
,
Young
,
S. T. B.
, and
Bradshaw
,
P.
,
1979
, “
The Effect of Short Regions of High Surface Curvature on Turbulent Boundary Layers
,”
J. Fluid Mech.
,
94
(
02
), pp.
209
242
.10.1017/S0022112079001002
You do not currently have access to this content.