Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45 deg to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100–0.058 for AR 1:1–1:6, respectively. The experiments span a Reynolds number range of 4000–130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.

References

References
1.
Hajek
,
T. J.
,
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Higgins
,
A. W.
, and
Steuber
,
G. D.
,
1991
, “
Effects of Rotation on Coolant Passage Heat Transfer Volume I— Coolant Passages With Smooth Walls
,”.
NASA Contractor Report No. 4396
, Vol. I.
2.
Johnson
,
B. V.
,
Wagner
,
J. H.
, and
Steuber
,
G. D.
,
1993
, “
Effects of Rotation on Coolant Passage Heat Transfer Volume II—Coolant Passages With Trips Normal and Skewed to the Flow
,”
NASA Contractor Report No. 4396
, Vol. II.
3.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
, pp.
113
123
.10.1115/1.2928265
4.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
, pp.
42
51
.10.1115/1.2927736
5.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
, pp.
321
330
.10.1115/1.2927879
6.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
, pp.
847
857
.10.1115/1.2928038
7.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Large Eddy Simulation of Fully Developed Flow and Heat Transfer in a Rotating Duct With 45-Degree Ribs
,”
ASME Turbo Expo
,
Barcelona, Spain
, May 8–11,
ASME
Paper No. GT2006-90229.10.1115/GT2006-90229
8.
Chanteloup
,
D.
,
Juaneda
,
Y.
, and
Bolcs
,
A.
,
2002
, “
Combined 3-D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
124
, pp.
710
718
.10.1115/1.1506176
9.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Tow-Pass Rotating Rectangular Channels (AR=1:2 and AR=1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
, pp.
164
174
.10.1115/1.1791649
10.
Taslim
,
M. E.
, and
Spring
,
S. D.
,
1994
, “
Effects of Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,”
J. Thermophys. Heat Transf.
,
8
(
3
), pp.
555
562
.10.2514/3.578
11.
Han
,
J. C.
,
Zang
,
Y. M.
, and
Lee
,
C. P.
,
1994
, “
Influence of Surface Heating Condition on Local Heat Transfer in a Rotating Square Channel With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
116
, pp.
149
158
.10.1115/1.2928269
12.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2007
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) Under High Rotation Numbers
,”
ASME Turbo Expo
,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-27067.10.1115/GT2007-27067
13.
Lei
,
J.
,
Han
,
J. C.
, and
Huh
,
M.
,
2011
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR=2:1) at High Rotation Numbers
,”
ASME Turbo Expo
,
Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-45926.10.1115/GT2011-45926
14.
Huh
,
M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Effect of Rib Spacing on Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) With a Sharp Entrance at High Rotation Numbers
,”
ASME Turbo Expo
,
Berlin, Germany
, June 9–13,
ASME
Paper No. GT2008-50311.10.1115/GT2008-50311
15.
Liu
,
Y. H.
,
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2006
, “
Rib Spacing Effect on Heat Transfer and Pressure Loss in a Rotating Two-Pass Rectangular Channel (AR=1:2) With 45-Degree Angled Ribs
,”
ASME Turbo Expo
,
Barcelona, Spain, May 8–11
,
ASME
Paper No. GT2006-90368.10.1115/GT2006-90368
16.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45-Degree Ribbed Walls
,”
ASME Turbo Expo
,
Reno, NV
, June 6–9,
ASME
Paper No. GT2005-68493.10.1115/GT2005-68493
17.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transf.
,
106
, pp.
774
781
.10.1115/1.3246751
18.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turb. Power
,
107
, pp.
628
635
.10.1115/1.3239782
19.
Elfert
,
M.
,
Voges
,
M.
, and
Klinner
,
J.
,
2008
, “
Detailed Flow Investigation Using PIV in a Rotating Square-Sectioned Two-Pass Cooling System With Ribbed Walls
,”
ASME Turbo Expo
,
Berlin, Germany
, June 9–13,
ASME
Paper No. GT2008-51183.10.1115/GT2008-51183
20.
Elfert
,
M.
,
Jarius
,
M. P.
, and
Weigand
,
B.
,
2004
, “
Detailed Flow Investigation Using PIV in a Typical Turbine Cooling Geometry With Ribbed Walls
,”
ASME Turbo Expo
,
Vienna, Austria
, June 14–17,
ASME
Paper No. GT2004-53566.10.1115/GT2004-53566
21.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
,
2005
, “
Fluid Flow and Heat Transfer in Rotating Curved Duct at High Rotation and Density Ratios
,”
ASME J. Turbomach.
,
127
, pp.
659
667
.10.1115/1.2019276
22.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Von Wolfersdorf
,
J.
,
Weigand
,
B.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2008
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME Turbo Expo
,
Berlin, Germany, June 9–13
,
ASME
Paper No. GT2008-51219.10.1115/GT2008-51219
23.
Su
,
G.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Heidmann
,
J. D.
,
2004
, “
Computation of Flow and Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=1:1, AR=1:2, AR=1:4) With 45-Deg Angled Ribs by a Reynolds Stress Turbulence Model
,”
ASME Turbo Expo
,
Vienna, Austria
, June 14–17,
ASME
Paper No. GT2004-5366210.1115/GT2004-53662.
24.
Han
,
J. C.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
, pp.
872
880
.10.1115/1.2928042
25.
Han
,
J. C.
, and
Zhang
,
P.
,
1991
, “
Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
113
, pp.
123
130
.10.1115/1.2927730
26.
Wang
,
T. S.
, and
Chyu
,
M. K.
,
1994
, “
Heat Convection in a 180-Deg Turning Duct With Different Turn Configurations
,”
J. Thermophys. Heat Transf.
,
8
(
3
), pp.
595
601
.10.2514/3.583
27.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
LDV Study of Developing Flows Through a Smooth Duct With a 180 Deg Straight-Corner Turn
,”
ASME J. Turbomach.
,
121
, pp.
167
174
.10.1115/1.2841228
28.
Liou
,
T. M.
,
Tzeng
,
Y. Y.
, and
Chen
,
C. C.
,
1999
, “
Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
, pp.
569
576
.10.1115/1.2841354
29.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
3rd ed.
,
McGraw-Hill Book Company
,
New York
.
30.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill, Inc.
,
New York
.
31.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transf.
,
23
, pp.
1127
1136
.10.1016/0017-9310(80)90177-5
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
J. Am. Soc. Mech. Eng.
,
75
, pp.
3
8
.
33.
Zhou
,
F.
, and
Acharya
,
S.
,
2008
, “
Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45 Deg Skewed Ribs
,”
ASME J. Turbomach.
,
130
(
2
), p.
021019
.10.1115/1.2752185
34.
Mayle
,
R. E.
,
1991
, “
Pressure Loss and Heat Transfer in Channels Roughened on Two Opposed Walls
,”
ASME J. Turbomach.
,
113
, pp.
60
66
.10.1115/1.2927738
You do not currently have access to this content.