In high-speed, unshrouded turbines, tip leakage flows generate large aerodynamic losses and intense unsteady thermal loads over the rotor blade tip and casing. The stage-loading and rotational speeds are steadily increased to achieve higher turbine efficiency, and hence, the overtip leakage flow may exceed the transonic regime. However, conventional blade tip geometries are not designed to cope with supersonic tip flow velocities. A great potential lies in the modification and optimization of the blade tip shape as a means to control the tip leakage flow aerodynamics, limit the entropy production in the overtip gap, manage the heat-load distribution over the blade tip, and improve the turbine efficiency at high-stage loading coefficients. The present paper develops an optimization strategy to produce a set of blade tip profiles with enhanced aerothermal performance for a number of tip gap flow conditions. The tip clearance flow was numerically simulated through two-dimensional compressible Reynolds-averaged Navier–Stokes (RANS) calculations that reproduce an idealized overtip flow along streamlines. A multiobjective optimization tool, based on differential evolution combined with surrogate models (artificial neural networks), was used to obtain optimized 2D tip profiles with reduced aerodynamic losses and minimum heat transfer variations and mean levels over the blade tip and casing. Optimized tip shapes were obtained for relevant tip gap flow conditions in terms of blade thickness to tip gap height ratios (between 5 and 25) and blade pressure loads (from subsonic to supersonic tip leakage flow regimes), imposing fixed inlet conditions. We demonstrated that tip geometries that perform superior in subsonic conditions are not optimal for supersonic tip gap flows. Prime tip profiles exist, depending on the tip flow conditions. The numerical study yielded a deeper insight on the physics of tip leakage flows of unshrouded rotors with arbitrary tip shapes, providing the necessary knowledge to guide the design and optimization strategy of a full blade tip surface in a real 3D turbine environment.

References

References
1.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,”
Turbine Blade Tip Design and Tip Clearance Treatment (Von Karman Institute for Fluid Dynamics Lecture Series)
,
T.
Arts
, ed.,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genese, Belgium
.
2.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
64
79
.10.1111/j.1749-6632.2001.tb05843.x
3.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in A Linear Cascade
,”
ASME J. Turbomach.
,
128
, pp.
300
309
.10.1115/1.2137745
4.
Moore
,
J.
, and
Elward
,
K. M.
,
1993
, “
Shock Formation in Overexpanded Tip Leakage Flow
,”
ASME J. Turbomach.
,
115
, pp.
392
399
.10.1115/1.2929266
5.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
, pp.
301
309
.10.1115/1.3262269
6.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
, pp.
643
651
.10.1115/1.2929188
7.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.
,
Pang Lee
,
C.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
, pp.
778
787
.10.1115/1.1626684
8.
Nasir
,
H.
,
Ekkad
,
S. V.
,
Kontrovitz
,
D. M.
,
Bunker
,
R. S.
, and
Prakash
,
C.
,
2004
, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
,
126
, pp.
221
228
.10.1115/1.1731416
9.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
, p.
011006
.10.1115/1.2950068
10.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
, pp.
213
220
.10.1115/1.2162183
11.
Arts
,
T.
,
Ginibre
,
P.
,
Oksuz
,
O.
,
Iliopoulou
,
V.
, and
Key
,
N.
,
2005
, “
Comparison of Turbine Tip Leakage Aero Thermal Flows for Flat Tip and Squealer Tip Geometries at High-Speed Conditions—Experimental and Numerical Investigation
,”
6th European Conference on Turbomachinery
,
Lille, France
, March 7–11.
12.
Dey
,
D.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Tip Desensitization of an Axial Turbine Rotor Using Tip Platform Extension
,” ASME Paper No. GT2001-0484.
13.
Saha
,
A. K.
,
Acharya
,
S.
,
Prakash
,
C.
, and
Bunker
,
R. S.
,
2003
, “
Blade Tip Leakage Flow and Heat Transfer With Pressure Side Winglet
,”
ASME
Paper No. GT2003-38620. 10.1115/GT2003-38620
14.
Schabowski
,
Z.
, and
Hodson
,
H.
,
2007
, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglets and Squealers
,”
ASME
Paper No. GT2007-27623. 10.1115/GT2007-27623
15.
Harvey
,
N. W.
, and
Ramsden
,
K.
,
2001
, “
A Computational Study of a Novel Turbine Rotor Partial Shroud
,”
ASME J. Turbomach.
,
123
, pp.
534
543
.10.1115/1.1370166
16.
Harvey
,
N. W.
,
Newman
,
D. A.
,
Haselbach
,
F.
, and
Willer
,
L.
,
2006
, “
An Investigation Into a Novel Turbine Rotor Winglet: Part I—Design and Model Rig Test Results
,”
ASME
Paper No. GT2006-90456. 10.1115/GT2006-90456
17.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
133
, p.
041026
.10.1115/1.4003055
18.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
, p.
041001
.10.1115/1.4002949
19.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
, p.
041025
.10.1115/1.4002424
20.
Wheeler
,
A. P. S.
,
Korakianitis
,
T.
, and
Banneheke
,
S.
,
2011
, “
Tip Leakage Losses in Subsonic and Transonic Blade-Rows
,”
ASME
Paper No. GT2011-45798. 10.1115/GT2011-45798
21.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamics Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.10.2514/1.55134
22.
He
,
L.
,
Zhang
Q.
,
Wheeler
,
A. P. S.
, and
Atkins
,
N.
,
2010
, “
Over-Tip-Shaping for Heat Load Reduction
,” UK patent application GB 1017797.0.
23.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.
,
2012
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
, p.
041022
.10.1115/1.4003719
24.
Shyam
,
V.
, and
Ameri
,
A.
,
2011
, “
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
,”
ASME
Paper No. GT2011-46390. 10.1115/GT2011-46390
25.
Zhang
,
Q.
, and
He
,
L.
,
2012
, “
Tip-Shaping for HP Turbine Blade Aero-Thermal Performance Management
,”
ASME
Paper No. GT2012-68290. 10.1115/GT2012-68290
26.
Verstraete
,
T.
,
2010
,
Introduction to Optimization and Multidisciplinary Design (Introduction to Optimization and Multidisciplinary Design in Aeronautics and Turbomachinery Lecture Series)
,
T.
Verstraete
and
J.
Périaux
, eds.,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genese, Belgium
.
27.
Heyes
,
F. J. G.
, and
Hodson
,
H. P.
,
1993
, “
Measurement and Prediction of Tip Clearance Flow in Linear Turbine Cascades
,”
ASME J. Turbomach.
,
115
, pp.
376
382
.10.1115/1.2929264
28.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
, and
Yasa
,
T.
,
2012
, “
Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine
,”
ASME
Paper No. GT2012-69492. 10.1115/GT2012-69492
29.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization
,”
ASME J. Turbomach.
,
132
, p.
021014
.10.1115/1.3104615
30.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
, p.
031004
.10.1115/1.3144162
31.
Farin
,
G.
,
1993
,
Curves and Surfaces for Computer Aided Geometric Design
,
Academic Press
,
San Diego
.
32.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Wiley
,
New York
.
33.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.10.1115/1.2929299
34.
Bindon
,
J. P.
,
1988
, “
The Measurement and Formation of Tip Clearance Loss
,” ASME Paper No. 88-GT-203.
35.
Booth
,
T. C.
,
1985
,
Importance of Tip Clearance Flows in Turbine Design (Tip Clearance Effects in Axial Turbomachines Lecture Series)
,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genese, Belgium
.
36.
Zimmerman
,
H.
, and
Wolff
,
K. H.
,
1998
, “
Air Systems Correlations—Part 1: Labyrinth Seals
,” ASME Paper No. 98-GT-206.
You do not currently have access to this content.