Time-periodical unsteady flows are typical in turbomachinery. Simulating such flows using a conventional time marching approach is the most accurate but is extremely time consuming. In order to achieve a better balance between accuracy and computational expenses, a cubic-spline-based time collocation method is proposed. In this method, the time derivatives in the Navier–Stokes equations are obtained by using the differential quadrature method, in which the periodical flow variables are approximated by cubic splines. Thus, the computation of a time-periodical flow is substituted by several coupled quasi-steady flow computations at sampled instants. The proposed method is then validated against several typical turbomachinery periodical unsteady flows, i.e., transonic compressor rotor flows under circumferential inlet distortions, single stage rotor–stator interactions, and IGV–rotor interactions. The results show that the proposed cubic-spline-based time collocation method with appropriate time sampling can well resolve the dominant unsteady effects, while the computational expenses are kept much less than the traditional time-marching simulation. More importantly, this paper provides a framework on the basis of a time collocation method in which one may choose more compatible test functions for the concerned specific unsteady flows so that better modeling of the flows can be expected.

References

References
1.
Denton
,
J. D.
, and
Singh
,
U. K.
,
1979
, “
Time Marching Methods for Turbomachinery Flow Calculation
,”
Application of Numerical Methods to Flow Calculations in Turbomachines (VKI Lecture Series)
,
E.
Schmidt
, ed.,
von Kármán Institute for Fluid Dynamics
,
Rhode-St-Genèse, Belgium
.
2.
Adamczyk
,
J. J.
,
1985
, “
Model Equations for Simulating Flows in Multistage Turbomachinery
,”
ASME Paper No. 85-GT-226
.
3.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
(
11
), pp.
1559
1568
.10.2514/3.60823
4.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
J. Propul. Power
,
6
(
5
), pp.
621
627
.10.2514/3.23263
5.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.10.1115/1.2927714
6.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1984
, “
A Linearized Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Fluid Mech.
,
149
, pp.
403
429
.10.1017/S002211208400272X
7.
Dufour
,
G.
,
Sicot
,
F.
,
Puigt
,
G.
,
Liauzun
,
C.
, and
Dugeai
,
A.
,
2010
, “
Contrasting the Harmonic Balance and Linearized Methods for Oscillating-Flap Simulations
,”
AIAA J.
,
48
(
4
), pp.
788
797
.10.2514/1.43401
8.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
9.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/3.15137
10.
Gopinath
,
A.
, and
Jameson
,
A.
,
2005
, “
Time Spectral Method for Periodic Unsteady Computations Over Two- and Three-Dimensional Bodies
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, January 10–13,
AIAA
Paper No. 2005-1220.10.2514/6.2005-1220
11.
Ekici
,
K.
,
Hall
,
K. C.
, and
Kielb
,
R. E.
,
2010
, “
Harmonic Balance Analysis of Blade Row Interactions in a Transonic Compressor
,”
J. Propul. Power
,
26
(
2
), pp.
335
343
.10.2514/1.43879
12.
Sicot
,
F.
,
Dufour
,
G.
, and
Gourdain
,
N.
,
2012
, “
A Time-Domain Harmonic Balance Method for Rotor/Stator Interactions
,”
ASME J. Turbomach.
,
134
(
1
), p.
011001
.10.1115/1.4003210
13.
Ekici
,
K.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
,
2008
, “
Computationally Fast Harmonic Balance Methods for Unsteady Aerodynamic Predictions of Helicopter Rotors
,”
J. Comput. Phys.
,
227
(
12
), pp.
6206
6225
.10.1016/j.jcp.2008.02.028
14.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer
,
London
.
15.
Shu
,
C.
, and
Richards
,
B. E.
,
1990
, “
High Resolution of Natural Convection in Square Cavity by Generalized Differential Quadrature
,”
Proceedings of the 3rd International Conference on Advances in Numeric Methods in Engineering: Theory and Application
,
Swansea
, UK, pp.
978
985
.
16.
Shu
,
C.
, and
Chew
,
Y. T.
,
1997
, “
Fourier Expansion-Based Differential Quadrature and Its Application to Helmholtz Eigenvalue Problems
,”
Commun. Numer. Methods Eng.
,
13
(
8
), pp.
643
653
.10.1002/(SICI)1099-0887(199708)13:8<643::AID-CNM92>3.0.CO;2-F
17.
Shu
,
C.
,
Khoo
,
B. C.
, and
Yeo
,
K. S.
,
1994
, “
Numerical Solutions of Incompressible Navier-Stokes Equations by Differential Quadrature
,”
Finite Elem. Anal. Design
,
18
(
1–3
), pp.
83
97
.10.1016/0168-874X(94)90093-0
18.
Shu
,
C.
,
Chew
,
Y. T.
,
Khoo
,
B. C.
, and
Yeo
,
K. S.
,
1996
, “
Solutions of Three-Dimensional Boundary Layer Equations by Global Methods of Generalized Differential-Integral Quadrature
,”
Int. J. Numer. Methods Heat Fluid Flow
,
6
(
2
), pp.
61
75
.10.1108/09615539610113109
19.
Shu
,
C.
,
1996
, “
An Efficient Approach for Free Vibration Analysis of Conical Shells
,”
Int. J. Mech. Sci.
,
38
(
8–9
), pp.
935
949
.10.1016/0020-7403(95)00096-8
20.
Kouatchou
,
J.
,
2003
, “
Comparison of Time and Spatial Collocation Methods for Heat Equation
,”
J. Comput. Appl. Math.
,
150
, pp.
129
141
.10.1016/S0377-0427(02)00656-8
21.
Blazek
,
J.
,
2001
,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier
,
Oxford, UK
, Chap. 2.
22.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Past Airfoils and Wings
,”
Tenth Computational Fluid Dynamics Conference, Honolulu, HI, June 24–26
,
AIAA
Paper No. 91-1596. 10.2514/6.1991-1596
23.
Sicot
,
F.
,
Puigt
,
G.
, and
Montagnac
,
M.
,
2008
, “
Block-Jacobi Implicit Algorithms for the Time Spectral Method
,”
AIAA J.
,
46
(
12
), pp.
3080
3089
.10.2514/1.36792
24.
Gopinath
A.
,
2007
, “
Efficient Fourier-Based Algorithms for Time-Periodic Unsteady Problems
,”
Ph.D. thesis
,
Stanford University
,
Stanford, CA
.
25.
Ning
,
F.
, and
Xu
,
L.
,
2001
, “
Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver With One-Equation Spalart-Allmaras Turbulence Model
,”
ASME Paper No. 2001-GT-0359
.
26.
Fan
,
L.
,
Ning
,
F.
, and
Liu
,
H.
,
2008
, “
Aerodynamics of Compressor Casing Treatment Part I: Experiment and Time-Accurate Numerical Simulation
,”
ASME
Paper No. GT2008-51541.10.1115/GT2008-51541
27.
Edwards
,
J. R.
,
1997
, “
A Low-Diffusion Flux-Splitting Scheme for Navier-Stokes Calculations
,”
Comput. Fluids
,
26
(
6
), pp.
635
659
.10.1016/S0045-7930(97)00014-5
28.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Transport Model for Aerodynamic Flows
,”
30th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, January 6–9,
AIAA
Paper No. 92-0439.10.2514/6.1992-439
29.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
,
W. W.
,
2003
, “
Stator-Rotor Interactions in a Transonic Compressor—Part 2: Description of a Loss-Producing Mechanism
,”
ASME J. Turbomach.
,
125
(
2
), pp.
336
345
.10.1115/1.1540120
30.
Snider
,
A. D.
,
1972
, “
An Improved Estimate of the Accuracy of Trigonometric Interpolation
,”
SIAM J. Numer. Anal.
,
9
(
3
), pp.
505
508
.10.1137/0709045
31.
Sharma
,
A.
, and
Meir
,
A.
,
1966
, “
Degree of Approximation of Spline Interpolation
,”
J. Math. Mech.
,
15
, pp.
759
767
.10.1512/iumj.1966.15.15051
You do not currently have access to this content.