Increasing interest is being paid by architects, project developers and local governments to understanding where small wind turbines can effectively be exploited to provide delocalized power in the built environment. The wind conditions in the rooftop area of buildings in urban locations are, however, very complex and the real adaptability of wind turbines to these environments is not yet tested both in terms of real producibility and of structural compatibility with the building themselves. In these installations, in particular, the flow that incomes on the rotor is often inclined with respect to the horizontal direction due to the interaction with the building façade and the roof. A correct estimation of the impact of an inclined flow on the performance of horizontal-axis wind turbines, therefore, becomes a very relevant issue to correctly predict the potential energy yield of a machine. To this purpose, a simulation code based on a blade element momentum (BEM) approach was developed and validated by means of experimental data found in the literature. The code was then used to evaluate the energetic suitability of a small-size wind turbine installation in the rooftop of a building in a conventional European city. A numerical computational fluid dynamics (CFD) analysis was carried out to characterize the flow field in the rooftop area of different buildings. The flow velocity modulus and direction were calculated for several oncoming wind profiles: The results were projected into an available wind power curve in the rooftop of the building. The effective energy-yield capabilities were then corrected using the model for the flow inclination as a function of the specific flow conditions in the rooftop area. The results were finally exploited to analyze the energy-oriented feasibility of an installation in a similar context.

References

References
1.
Global Wind Energy Council
,
2011
, “
Global Wind Report
,” GWEC, Brussels, Belgium, Technical Report.
2.
Mertens
,
S.
,
2006
,
Wind Energy in the Built Environment
,
Multi-Science
,
Brentwood, UK
.
3.
Dayan
,
E.
,
2006
, “
Wind Energy in Buildings: Power Generation From Wind in the Urban Environment—Where It Is Needed Most
,”
Refocus
,
72
(
2
), pp.
33
38
.10.1016/S1471-0846(06)70545-5
4.
Beller
,
C.
,
2009
, “
Urban Wind Energy—State of the Art 2009
,”
Risø Laboratory—DTU
,
Roskilde, Denmark
, Tech. Rep. No. Risø-R-1668(EN).
5.
Balduzzi
,
F.
,
Bianchini
,
A.
, and
Ferrari
,
L.
,
2012
, “
Microeolic Turbines in the Built Environment: Influence of the Installation Site on the Potential Energy Yield
,”
Renew. Energy
,
45
, pp.
163
174
.10.1016/j.renene.2012.02.022
6.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.10.1016/j.apenergy.2011.12.008
7.
Syngellakis
,
K.
,
2006
, “
Urban Wind Turbines: Development of the UK Market
,”
Proc. of the European Wind Energy Conference 2006
,
Athens, Greece
, February 27–March 2.
8.
Banks
,
D.
,
Cochran
,
B.
,
Denoon
,
R.
, and
Wood
,
G.
,
2008
, “
Harvesting Wind Power From Tall Buildings
,”
Proceedings of the Council on Tall Buildings and Urban Habitat 8th World Congress (CTBUH), Dubai, UAE, March 3–5
, pp.
320
327
.
9.
Gryning
,
S. E.
, and
Batchvarova
,
E.
,
2008
, “
Modelling of the Urban Wind Profile
,”
Air Pollution Modeling and Its Application XIX
,
(NATO Science for Peace and Security Series)
,
NATO, Brussels, Belgium
, pp.
18
27
.
10.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
J. Wiley & Sons Ltd
,
Oxford, UK
.
11.
Tsalicoglou
,
C.
,
Barber
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2012
, “
Effect of Flow Inclination on Wind Turbine Performance
,”
Proc. ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11–15, Paper No. GT2012-68473.
12.
Wood
,
D.
,
2011
,
Small Wind Turbines: Analysis, Design, and Application
,
Springer
,
London
.
13.
Pedersen
,
T. F.
,
Gjerding
,
T.
,
Ingham
,
P.
,
Enevoldsen
,
P.
,
Hansen
,
J. K.
, and
Jørgensen
,
H. K.
,
2002
, “
Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms
,”
Risø Laboratory—DTU
,
Roskilde, Denmark
, Tech. Rep. No. Risø-R-1330(EN).
14.
Mertens
,
S.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Solar Energy Eng.
,
125
, pp.
433
440
.10.1115/1.1629309
15.
Simão Ferreira
,
C. J.
,
van Bussel
,
G.
, and
van Kuik
,
G.
,
2006
, “
An Analytical Method to Predict the Variation in Performance of a H-Darrieus in Skewed Flow and Its Experimental Validation
,”
Proc. of the European Wind Energy Conference (EWEC2006)
,
Athens, Greece
, February 27–March 2.
16.
Simão Ferreira
,
C. J.
,
van Bussel
,
G.
, and
van Kuik
,
G.
, “
Wind Tunnel Hotwire Measurements, Flow Visualization and Thrust Measurement of a VAWT in Skew
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 9–12,
AIAA
Paper No. 2006-1368.10.2514/6.2006-1368
17.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
On the Effects of a Skewed Flow on the Performance of a Three-Bladed H-Darrieus Turbine: Experimental and Theoretical Analyses
,”
Proceedings of the International Conference on Applied Energy (ICAE 2012)
,
Suzhou, China
, July 5–8
18.
Sharpe
,
T.
, and
Proven
,
G.
,
2010
, “
Crossflex: Concept and Early Development of a True Building Integrated Wind Turbine
,”
Energy Build.
,
42
, pp.
2365
2375
.10.1016/j.enbuild.2010.07.032
19.
Wineur Project
,
2007
, “
Urban Wind Turbines Guidelines for Small Wind Turbines in the Built Environment
,”
Tech. Rep.
, www.urbanwind.org, accessed September 18, 2012.
20.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
2nd ed.
,
Wiley
,
London
.
21.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.10.1016/j.paerosci.2006.10.002
22.
Xu
,
G.
, and
Sankar
,
L. N.
,
1999
, “
Computational Study of Horizontal Axis Wind Turbines
,”
Proc. of the 37th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 11–14,
AIAA
Paper No. 99-0042.10.2514/6.1999-42
23.
Buhl
,
M. L.
,
2005
, “
A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State
,”
NREL
,
Golden, CO
, Tech. Rep. No. TP-500-36834.
24.
Shen
,
W. Z.
,
Mikkelsen
,
R.
,
Sorensen
,
J. N.
, and
Bak
,
C.
,
2005
, “
Tip Loss Corrections for Wind Turbine Computations
,”
Wind Energy
,
8
, pp.
457
475
.10.1002/we.153
25.
Buckland
,
H. C.
,
Masters
,
I.
,
Chapman
,
J. C.
, and
Orme
,
J. A. C.
,
2001
, “
Blade Element Momentum Theory in Modelling Tidal Stream Turbines
,”
Proc. of the 18th UK Conference on Computational Mechanics (ACME-UK)
,
Southampton, UK
, March 29–31,
26.
Du
,
Z.
, and
Selig
,
M. S.
,
1998
, “
A 3-D Stall-Delay Model for Horizontal Axis Wind Turbines Performance Prediction
,”
Proc. of the 1998 ASME Wind Energy Symposium
,
Reno, NV
, January 12–15,
AIAA
Paper No. 98-0021.10.2514/6.1998-21
27.
Wang
,
T.
, and
Coton
,
F. N.
,
2000
, “
Prediction of the Unsteady Aerodynamic Characteristics of Horizontal Axis Wind Turbines Including Three-Dimensional Effects
,”
Proc. IMechE A: J. Power Energy
, pp.
385
400
.
28.
Bianchi
,
F. D.
,
de Battista
,
H.
, and
Mantz
,
R. J.
,
2007
,
Wind Turbine Control Systems. Principles, Modelling and Gain Scheduling Design
,
Springer
,
London
.
29.
Rosas
,
P.
,
2003
, “
Dynamic Influences of Wind Power in Power System
,”
Ph.D. thesis
,
Technical University of Denmark
, Roskilde, Denmark.
30.
Butterfield
,
C. P.
,
Musial
,
W. P.
,
Scott
,
G. N.
, and
Simms
,
D. A.
,
1992
, “
NREL Combined Experimental Final Report: Phase II
,”
NREL
,
Golden, CO
, Tech. Rep. No. TP-442-4807.
31.
Hand
,
M. M.
, and
Simms
,
D. A.
,
1997
, “
Final Report of IEA annex XIV: Field Rotor Aerodynamics
,” Energy Research Center in the Netherlands (ECN), Petten, The Netherlands,
Tech. Rep. No. ECN C-97-027
.
32.
Lindenburg
,
C.
,
2003
, “
Investigation Into Rotor Blade Aerodynamics—Analysis of the Stationary Measurements on the UAE Phase-VI Rotor in the NASA-Ames Wind Tunnel
,” Energy Research Center in the Netherlands (ECN), Petten, The Netherlands,
Tech. Rep. No. ECN C-03-025
.
33.
Jonkman
,
J. M.
,
2003
, “
Modeling of the UAE Wind Turbine for Refinement of FAST AD BEM Theory: How to Take Into Account the Radial Flow Inside of a 1-D Numerical Code
,”
NREL
,
Golden, CO
, Tech. Rep. No. TP-500-34755, pp.
05
28
.
34.
Lanzafame
,
R.
, and
Messina
,
M.
,
2012
, “
BEM Theory: How to Take Into Account the Radial Flow Inside of a 1-D Numerical Code
,”
Renew. Energy
,
39
, pp.
440
446
.10.1016/j.renene.2011.08.008
35.
Ackerman
,
M. C.
,
1992
, “
Yaw Modelling of Small Wind Turbines
,”
J. Wind. Eng. Ind. Aerodyn.
,
39
, pp.
1
9
.10.1016/0167-6105(92)90527-H
36.
de Vries
,
O.
,
1979
,
Fluid Dynamic Aspects of Wind Energy Conversion
,
AGARD
, Neuilly-sur-Seine, France, Tech. Rep. AGARD-AG-243.
37.
Hansen
,
A. C.
,
1992
, “
Yaw Dynamics of Horizontal Axis Wind Turbines
,”
NREL
,
Golden, CO
, Tech. Rep. No. TP-442-4822.
38.
Schepers
,
J. G.
,
2008
, “
IEA Annex XX: Comparison Between Calculations and Measurements on a Wind Turbine in Yaw in the NASA-Ames Wind Tunnel
,”
Tech. Rep. No. ECN-E-07-072
.
39.
Ratti
,
C.
,
Di Sabatino
,
S.
,
Caton
,
F.
,
Britter
,
R.
, and
Brown
,
M.
,
2002
, “
Analysis of 3-D Urban Databases With Respect to Pollution Dispersion for a Number of European and American Cities
,”
Water Air Soil Poll.
,
2
(
5–6
), pp.
459
469
.10.1023/A:1021380611553
40.
Martin
,
C. L.
,
Longley
,
I. D.
,
Dorsey
,
J. R.
,
Thomas
,
J. R.
,
Gallagher
,
M. W.
, and
Nemitz
,
E.
,
2009
, “
Ultrafine Particle Fluxes Above Four Major European Cities
,”
Atmospher. Env.
,
43
, pp.
4714
4721
.10.1016/j.atmosenv.2008.10.009
41.
Engineering Science Data Unit
,
1984
, “
Strong Winds in the Atmospheric Boundary Layer, Part 1: Mean-Hourly Wind Speeds
,”
ESDU 82026 With Amendment A and B
,
London
.
42.
OpenCFD Ltd., 2013, “OpenFoam®–The Open Source Computational Fluid Dynamics (CFD) Toolbox,”
http://www.openfoam.com, accessed January 6, 2013.
43.
Franke
,
J.
,
Hirsch
,
C.
,
Jensen
,
A. G.
,
Krüs
,
H. W.
,
Schatzmann
,
M.
,
Westbury
,
P. S.
,
Miles
,
S. D.
,
Wisse
,
J. A.
, and
Wright
,
N. G.
,
2004
, “
Recommendations on the Use of CFD in Wind Engineering
,”
Proc. of the International Conference on Urban Wind Engineering and Building Aerodynamics
,
von Karman Institute
,
Saint-Genesius-Rode, Belgium
, May 5–7.
44.
Franke
,
J.
,
Hellsten
,
A.
,
Schlünzen
,
H.
, and
Carissimo
,
B.
,
2007
, “
Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment
,”
COST Office
,
Brussels, Belgium
, Tech. Rep.
45.
Tominaga
,
T.
,
Mochida
,
A.
,
Yoshie
,
R.
,
Kataoka
,
H.
,
Nozu
,
T.
,
Yoshikawa
,
M.
, and
Shirawasa
,
T.
,
2008
, “
AIJ Guidelines for Practical Applications of CFD to Pedestrian Wind Environment Around Buildings
,”
J. Wind. Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1749
1761
.10.1016/j.jweia.2008.02.058
46.
Bianchi
,
S.
,
2012
, “
Effects of a Misaligned Flow on the Performance of an Horizontal-Axis Wind Turbine
,”
M.Sc. thesis in Energy Engineering
,
University of Florence
,
Italy
, July 2012.
You do not currently have access to this content.