This paper is focused on the influence of stator-rotor purge flow injection angle on the aerodynamic and thermal performance of a rotor blade cascade. Tests were performed in a seven-blade cascade of a high-pressure gas turbine rotor at low Mach number (Ma2is = 0.3) under different blowing conditions. A number of fins were installed inside the upstream slot to simulate the effect of rotation on the seal flow exiting the gap in a linear cascade environment. The resulting coolant flow is ejected with the correct angle in the tangential direction. Purge flow injection angle and blowing conditions were changed in order to identify the best configuration in terms of end wall thermal protection and secondary flows reduction. The 3D flow field was surveyed by traversing a five-hole miniaturized pressure probe in a downstream plane. Secondary flow velocities, loss coefficient, and vorticity distributions are presented for the most significant test conditions. Film cooling effectiveness distributions on the platform were obtained by thermochromic liquid crystals (TLC) technique. Results show that purge flow injection angle has an impact on secondary flows development and, thus, on the end wall thermal protection, especially at high injection rates. Passage vortex is enhanced by a negative injection angle, which simulates the real counter rotating purge flow direction.

References

References
1.
Owen
,
J. M.
,
1988
, “
Air-Cooled Gas-Turbine Discs: A Review of Recent Research
,”
Int. J. Heat Fluid Flow
,
9
, pp.
354
365
.10.1016/0142-727X(88)90001-X
2.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
, pp.
524
529
.10.1115/1.3450239
3.
Roy
,
R. P.
,
Squires
,
K. D.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W. J.
, and
Ansari
,
A.
,
2000
, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages—Experiments and Simulations
,”
ASME Paper No. 2000-GT-198
.
4.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance: Part I—Flow Field Measurements
,”
ASME Paper No. 2000-GT-199
.
5.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,”
ASME Paper No. 2000-GT-200
.
6.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
ASME Paper No. 2000-GT-214
.
7.
Kost
,
F.
, and
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aero-Dynamic Measurements
,”
ASME Paper No. 2001-GT-0145
.
8.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME Paper No. 2001-GT-0146
.
9.
Oke
,
R. A.
, and
Simon
,
T. W.
,
2002
, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
ASME
Paper No. GT2002-30169.10.1115/GT2002-30169
10.
Thole
,
K. A.
, and
Knost
,
D. G.
,
2005
, “
Heat Transfer and Film Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5255
5269
.10.1016/j.ijheatmasstransfer.2005.07.036
11.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
, pp.
297
305
.10.1115/1.1811099
12.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
, p.
061019
.10.1115/1.4004817
13.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J.-C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
, p.
041004
.10.1115/1.3068327
14.
Narzary
,
D.
,
2009
, “
Experimental Study of Gas Turbine Blade Film Cooling and Heat Transfer
,”
Ph.D. thesis
,
Texas A&M University
,
College Station, TX
.
15.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
, p.
041014
.10.1115/1.4003725
16.
Suryanarayanan
,
A.
,
Mhetras
,
S.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2009
, “
Film Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
, p.
011014
.10.1115/1.2752184
17.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
, p.
041001
.10.1115/1.3142860
18.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
,
de la Loma
,
A.
, and
Ginibre
P.
,
2010
, “
Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
132
, p.
021006
.10.1115/1.3142859
19.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
, p.
021011
.10.1115/1.4000578
20.
Green
,
B. R.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2012
, “
Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, One and One-Half Stage High-Pressure Turbine—Part II: Analytical Flow Field Analysis
,”
ASME
Paper No. GT2012-69939.10.1115/GT2012-69939
21.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME
Paper No. GT2006-90838.10.1115/GT2006-90838
22.
Bindon
J. P.
,
1980
, “
Exit Plane and Suction Surface Flows in an Annular Turbine Cascade With a Skewed Inlet Boundary Layer
,”
Int. J. Heat Fluid Flow
,
2
, pp.
57
66
.10.1016/0142-727X(80)90021-1
23.
Boletis
,
E.
,
Sieverding
,
C. H.
, and
Van Hove
W.
,
1983
, “
Effect of Skewed Inlet Endwall Boundary Layer on the 3D-Flowfield in an Annular Cascade
,”
Paper No. AGARD-CP-351
.
24.
Walsh
,
J. A.
, and
Gregory-Smith
,
D. G.
,
1987
, “
The Effect of Inlet Skew on the Secondary Flows and Losses in a Turbine Cascade
,”
IMechE Paper No. C275/87
.
25.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2007
, “
Inlet Turbulence Intensity Effect on Endwall Film Cooling
,”
Proceedings of the 7th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Athens, Greece
, March 5–9, pp.
1105
1116
.
26.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J Turbomach.
,
110
, pp.
1
8
.10.1115/1.3262163
27.
Barigozzi
,
G.
,
Fontaneto
,
F.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2012
, “
Influence of Coolant Flow Rate on Aero-Thermal Performance of a Rotor Blade Cascade With Endwall Film Cooling
,”
ASME J. Turbomach.
,
134
, p.
051038
.10.1115/1.4004858
28.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
,
1992
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
, pp.
765
775
.10.1115/1.2928030
29.
Kost
,
F. H.
, and
Holmes
,
A. T.
,
1985
, “
Aerodynamic Effect of Coolant Ejection in the Rear Part of Transonic Rotor Blades
,”
Paper No. AGARD-CP-390
.
30.
Mee
,
D. J.
,
1992
, “
Techniques for Aerodynamic Loss Measurement of Transonic Turbine Cascade With Trailing-Edge Region Coolant Ejection
,”
ASME Paper No. 92-GT-157
.
You do not currently have access to this content.