The noise emitted by axial fans plays an integral role in product design. When conventional design procedures are applied, the aeroacoustic properties are controlled via an extensive trial-and-error process. This involves building physical prototypes and performing acoustic measurements. In general, this procedure makes it difficult for a designer to gain an understanding of the functional relationship between the noise and geometrical parameters of the fan. Hence, it is difficult for a human designer to control the aeroacoustic properties of the fan. To reduce the complexity of this process, we propose an inverse design methodology driven by a genetic algorithm. It aims to find the fan geometry for a set of given objectives. These include, most notably, the sound pressure frequency spectrum, aerodynamic efficiency, and pressure head. Individual bands of the sound pressure frequency spectrum may be controlled implicitly as a function of certain geometric parameters of the fan. In keeping with inverse design theory, we represent the design of axial fans as a multi-objective multiparameter optimization problem. The individual geometric components of the fan (e.g., rotor blades, winglets, guide vanes, shroud, and diffusor) are represented by free-form surfaces. In particular, each blade of the fan is individually parameterized. Hence, the resulting fan is composed of geometrically different blades. This approach is useful when studying noise reduction. For the analysis of the flow field and associated objectives, we utilize a standard Reynolds averaged Navier–Stokes (RANS) solver. However, for the evaluation of the generated noise, a meshless lattice-Boltzmann solver is employed. The method is demonstrated for a small axial fan, for which tonal noise is reduced.

References

References
1.
Stadler
,
M.
,
Schmitz
,
M. B.
,
Ragg
,
P.
,
Holman
,
D. M.
, and
Brionnaud
,
R.
,
2012
, “
Aeroacoustic Optimization for Axial Fans With the Lattice-Boltzmann Method
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
, June 11-15,
ASME
Paper No. Paper No. GT2012-69081.10.1115/GT2012-69081
2.
Holland
,
J. H.
,
1975
,
Adaption in Natural and Artificial Systems
,
University of Michigan Press
, Ann Arbor, MI.
3.
Rechenberg
,
I.
,
1973
,
Evolutionsstrategie–Optimierung technischer Systeme nach Prinzipien der biologischen Evolution
,
Fommann-Holzboog
,
Stuttgart
.
4.
Price
,
K.
, and
Storn
,
N.
,
1997
, “
Differential Evolution
,”
Dr. Dobb's Journal
, April, pp.
14
18
.
5.
Abbas
,
H. A.
,
Sarker
,
R.
, and
Newton
,
C.
,
2001
, “
PDE: A Pareto-Frontier Differential Evolution Approach for Multi-Objective Optimization Problems
,” Proceedings of the Congress on Evolutionary Computation (
CEC 2001
), Seoul, South Korea, May 27–30, Vol. 2, pp.
971
978
.10.1109/CEC.2001.934295
6.
Madavan
,
N. K.
,
2002
, “
Multiobjective Optimization Using a Pareto Differential Evolution Approach
,” Proceedings of the Congress on Evolutionary Computation (
CEC '02
),
Honolulu, HI
, May 12–17, Vol. 2, pp.
1145
1150
.10.1109/CEC.2002.1004404
7.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
Proceedings of the Parallel Problem Solving From Nature VI Conference
,
Paris, France
, September 18–20, pp.
849
858
.10.1007/3-540-45356-3_83
8.
Giannakoglou
,
K. C.
, and
Karakasis
,
M. K.
,
2006
,
Hierarchical and Distributed Metamodel-Assisted Evolutionary Algorithms (VKI Lecture Series on Introduction to Optimization and Multidisciplinary Design)
,
VKI
,
Brussels
.
9.
Karakasis
,
M. K.
,
Giannakoglou
,
K. C.
, and
Koubogiannis
,
D. G.
,
2007
, “
Aerodynamic Design of Compressor Airfoils Using Hierarchical, Distributed Metamodel-Assisted Evolutionary Algorithms
,”
The 7th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics
,
Athens, Greece
, March 5–9.
10.
Pierret
,
S.
,
1999
, “
Designing Turbo Machinery Blades by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm and the Navier-Stokes Equations
,”
Ph.D. thesis
,
Faculte Polytechnique de Mons
,
Mons
, Belgium.
11.
Verstraete
,
T.
,
2008
, “
Multidisciplinary Turbo Machinery Component Optimization Considering Performance, Stress and Internal Heat Transfer
,”
Ph.D. thesis
,
University of Ghent
,
Ghent
, Belgium.
12.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
13.
White
,
H.
,
Gallant
,
R. A.
,
Kornik
,
K.
,
Stinchcombe
,
M.
, and
Wooldridge
,
J.
,
1992
,
Artificial Neural Networks: Approximation Theory and Learning
,
Blackwell
,
Oxford
, UK.
14.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
15.
Bors
,
A. G.
,
2001
, “
Introduction of the Radial Basis Function (RBF) Networks
,”
Online Symposium for Electronics Engineers, DSP Algorithms: Multimedia
, Vol.
1
(
1
), pp.
1
7
.
16.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.10.2514/1.8650
17.
Zangeneh
,
M.
, and
de Maillard
,
M.
,
2012
, “
Optimization of Fan Noise by Coupling 3D Inverse Design and Automatic Optimizer
,”
International Conference on Fan Noise, Technology and Numerical Methods (FAN2012)
,
Senlis, France
, April 18–20.
18.
CD-Adapco, 2011, “Star CCM+ User Manual.”
19.
Next Limit Inc., 2011, “XFlow User Manual.”
20.
McNamara
,
G. R.
, and
Zanetti
,
G.
,
1988
, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
,
61
, pp.
2332
2335
.10.1103/PhysRevLett.61.2332
21.
Chopard
,
B.
, and
Droz
,
M.
,
1998
,
Cellular Automata Modeling of Physical Systems
,
Cambridge University Press
,
New York
.
22.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equation
,”
Phys. Rev. Lett.
,
56
, pp.
1505
1508
.10.1103/PhysRevLett.56.1505
23.
Next Limit Inc., 2011, “XFlow Validation Guide.”
24.
Strouhal
,
V.
,
1878
, “
Über eine besondere Art der Tonerregung
,”
Ann. Phys. Chem.
,
5
, pp.
216
251
.
25.
Oertel
,
H.
, Jr.
,
1990
, “
Wakes Behind Blunt Bodies
,”
Ann. Rev. Fluid Mech.
,
22
, pp.
539
564
.10.1146/annurev.fl.22.010190.002543
26.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Ann. Rev. Fluid Mech.
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
27.
Amazon Elastic Compute Cloud (EC2) Documentation,
http://aws.amazon.com/documentation/ec2/
28.
Schmitz
,
M. B.
,
Eimer
,
G.
, and
Schmid
,
H.
,
2011
, “
Design and Test of a Small High Performance Diagonal Fan
,” Proceedings of the
ASME
Turbo Expo 2011, Vancouver, BC, Canada, June 6–10,
ASME
Paper No. GT2011-45365.10.1115/GT2011-45365
You do not currently have access to this content.