Semi-inverse design is the automatic recambering of an aerofoil during a computational fluid dynamics (CFD) calculation in order to achieve a target lift distribution while maintaining thickness, hence, “semi-inverse.” In this design method, the streamwise distribution of curvature is replaced by a streamwise distribution of lift. The authors have developed an inverse design code based on the method of Hield (2008, “Semi-Inverse Design Applied to an Eight Stage Transonic Axial Flow Compressor,” ASME Paper No. GT2008-50430), which can rapidly design three-dimensional fan blades in a multistage environment. The algorithm uses an inner loop to design to radially varying target lift distributions, an outer loop to achieve radial distributions of stage pressure ratio and exit flow angle, and a choked nozzle to set design mass flow. The code is easily wrapped around any CFD solver. In this paper, we describe a novel algorithm for designing simultaneously for specified performance at full speed and peak efficiency at part speed, without trade-offs between the targets at each of the two operating points. We also introduce a novel adaptive target lift distribution, which automatically develops discontinuous changes of calculated magnitude, based on the passage shock, eliminating erroneous lift demands in the shock vicinity and maintaining a smooth aerofoil.

References

References
1.
Tiow
,
W. T.
, and
Zangeneh
,
M.
,
2000
, “
A Three-Dimensional Viscous Transonic Inverse Design Method
,” ASME Paper No. 2000-GT-0525.
2.
de Vito
,
L.
,
Van den Braembussche
,
R. A.
, and
Deconinck
,
H.
,
2003
, “
A Novel Two-Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
,
125
, pp.
310
316
.10.1115/1.1545765
3.
Demeulenaere
,
A.
,
Léonard
,
O.
, and
Van den Braembussche
,
R.
,
1997
, “
A Two-Dimensional Navier-Stokes Inverse Solver for Compressor and Turbine Blade Design
,”
Proc. Inst. Mech. Eng.
,
211
, pp.
299
307
.10.1243/0957650971537204
4.
Páscoa
,
J. C.
,
Mendes
,
A. C.
, and
Gato
,
L. M. C.
,
2009
, “
A Fast Iterative Inverse Method for Turbomachinery Blade Design
,”
Mech. Res. Commun.
,
36
, pp.
630
637
.10.1016/j.mechrescom.2009.01.008
5.
Mileshin
,
V. I.
,
Orekhov
,
I. K.
,
Shchipin
,
S. K.
, and
Startsev
,
A. N.
,
2004
, “
New 3D Inverse Navier-Stokes Based Method Used to Design Turbomachinery Blade Rows
,”
ASME
Paper No. HT-FED2004-56436.10.1115/HT-FED2004-56436
6.
Mileshin
,
V. I.
,
Orekhov
,
I. K.
,
Shchipin
,
S. K.
, and
Startsev
,
A. N.
,
2007
, “
3D Inverse Design of Transonic Fan Rotors Efficient for a Wide Range of RPM
,”
ASME
Paper No. GT2007-27817.10.1115/GT2007-27817
7.
van Rooij
,
M. P. C.
,
Dang
,
T. Q.
, and
Larosiliere
,
L. M.
,
2007
, “
Improving Aerodynamic Matching of Axial Compressor Blading Using a Three-Dimensional Multistage Inverse Design Method
,”
ASME J. Turbomach.
,
129
, pp.
108
118
.10.1115/1.2372773
8.
Hield
,
P.
,
2008
, “
Semi-Inverse Design Applied to an Eight Stage Transonic Axial Flow Compressor
,”
ASME
Paper No. GT2008-50430.10.1115/GT2008-50430
9.
Nili-Ahmadabadi
,
M.
,
Hajilouy-Benisi
,
A.
,
Ghadak
,
F.
, and
Durali
,
M.
,
2010
, “
A Novel 2D Incompressible Viscous Inverse Design Method for Internal Flows Using Flexible String Algorithm
,”
ASME J. Fluids Eng.
,
132
(3), p.
031401
.10.1115/1.4001072
10.
Medd
,
A. J.
,
Dang
,
T. Q.
, and
Larosiliere
,
L. M.
,
2003
, “
3D Inverse Design Loading Strategy for Transonic Axial Compressor Blading
,”
ASME
Paper No. GT2003-38501.10.1115/GT2003-38501
11.
Roidl
,
B.
, and
Ghaly
,
G.
,
2011
, “
Redesign of a Low Speed Turbine Stage Using a New Viscous Inverse Design Method
,”
ASME J. Turbomach.
,
133
(1), p.
011009
.10.1115/1.4000491
12.
Ramamurthy
,
R.
, and
Ghaly
,
W.
,
2010
, “
Dual Point Redesign of an Axial Compressor Airfoil Using a Viscous Inverse Design Method
,”
ASME
Paper No. GT2010-23400.10.1115/GT2010-23400
13.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
, p.
021014
.10.1115/1.2950065
You do not currently have access to this content.