The present work forms part of a research project of the Institute of Jet Propulsion and Turbomachinery at the RWTH Aachen University in collaboration with GE Aviation. The subject is the detailed numerical analysis of the unsteady flow field, focusing on the interaction between the impeller and the passage diffuser of a close-coupled transonic centrifugal compressor used in an aero engine. The centrifugal compressor investigated is characterized by a close-coupled impeller and passage diffuser with a radial gap of only 3.6%. The close coupling tends to provide a high aerodynamic efficiency but simultaneously cause a high unsteady interaction between the impeller and the diffuser. These unsteady effects can have a significant impact on the performance of both components and present a challenge to state-of-the-art numerical methods. With increasing compressor efficiency, the more important it is to have an understanding of the detailed unsteady flow physics. Experimental data was obtained from a state-of-the art centrifugal compressor test rig located at the Institute of Jet Propulsion. Steady and unsteady pressure measurements within the impeller and diffuser are used to gain detailed information on the temporal, time-averaged, and spectral pressure distributions within the stage to validate the CFD. The work presented here shows the unsteady phenomena caused by the interaction and the location and propagation of these phenomena within the centrifugal stage. Within the impeller, the exducer is in first order excited by the blade passing frequency (BPF) of the diffuser, whereas in the diffuser both the BPF and the passage passing frequency (PPF), are present up until the end of the pipe-diffuser. Significant effects on the integral component performance could only be identified for the impeller. Special focus is paid to evaluate the diffuser upstream pressure field, since this is the major source of unsteadiness within the impeller. The performance of the rotor decreases due to the unsteady interaction. This effect is traced back to the unsteady tip-clearance flow, in which the time-averaged mass transport decreases, whereas the specific entropy production increases in a nonlinear way. Within the diffuser, local effects counteracting with respect to the integral performance are found. In front of the throat, there is less decay in the total pressure as a result of tangentially expanding pressure waves. Within the passage a decrease in flow uniformity in the unsteady flow is identified as the reason for the lower diffusion up until the throat and higher losses within the downstream diffuser passage.

References

References
1.
Hill
,
P.
, and
Peterson
,
C.
,
1992
,
Mechanics and Thermodynamics of Propulsion
,
2nd ed.
,
Addison-Wesley
,
Reading, MA
.
2.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,”
18th International Symposium on Air Breathing Engines (ISABE), Beijing, September 2–7, Paper No. ISABE-2007-1120, pp. 11
.
3.
Dean
,
R. C. J.
,
1959
, “
On the Necessity of Unsteady Flow in Fluid Machines
,”
Trans. ASME
,
81
, pp.
24–28
.
4.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2002
, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME Paper No. GT2002-30382
.10.1115/GT2002-30382
5.
Kenny
,
D.
,
1969
, “
A Novel Low-Cost Diffuser for High-Performance Centrifugal Compressors
,”
ASME J. Eng. Power
,
91(9)
, pp.
37
47
.
6.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Savory
,
E.
,
Zhang
,
C.
, and
Roberts
,
D.
,
2011
, “
Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor
,”
ASME J. Turbomach.
, 133(1), p. 011025.10.1115/1.4001136
7.
Shum
,
Y.
,
Tan
,
C.
, and
Cumpsty
,
N.
,
2000
, “
Impeller-Diffuser Interaction in a Centrifugal Compressor
,” ASME Paper No. 2000-GT-0428.
8.
Dean
,
R. C. J.
and
Senoo
,
Y.
,
1960
, “
Rotating Wakes in Vaneless Diffusers
,”
ASME J. Basic Eng.
,
86
, pp.
563
574
.10.1115/1.3662659
9.
Abdelwahab
,
A.
,
2010
, “
Numerical Investigation of the Unsteady Flow Fields in Centrifugal Compressor Diffusers
,” ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, UK, June 14–18,
ASME Paper No. GT2010-22489
.10.1115/GT2010-22489
10.
Grates
,
D. R.
,
2009
, “
Numerische simulation der instationaeren stroemung in einem radialverdichter mit pipe-diffusor
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
11.
Hodson
,
H.
, and
Dawes
,
W.
,
1998
, “
On the Interpretation of Measured Profile Losses in Unsteady Wake-Turbine Blade Interaction Studies
,”
ASME J. Turbomach.
120(2)
, pp.
276–284
.10.1115/1.2841403
12.
Ziegler
,
K.
,
2003
, “
Experimentelle untersuchung der laufrad-diffuror-interaktion in einem radialverdichter variabler geometrie
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
13.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J Turbomach.
,
115
(
1993
), pp.
621
656
.10.1115/1.2929299
14.
Bryans
,
A.
,
1986
, “
Diffuser for a Centrifugal Compressor
,” U.S. Patent No. 4,576,550, p.
8
.
15.
Findeisen
,
E.
,
2011
, “
Numerische pumpgrenzuntersuchung eines radialverdichters mittels stationaerer und instationaerer 3D-RANS-Simulation
,” Master's thesis, IST, Fakultaet fuer Maschinenwesen Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen, Germany.
16.
Zachau
,
U.
,
2007
, “
Experimental Investigation on the Diffuser Flow of a Centrifugal Compressor Stage With Pipe Diffuser
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
17.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.10.1016/0021-9991(81)90128-5
18.
Kuegeler
,
E.
,
2004
, “
Numerisches verfahren zur genauen analyse der kuehleffektivitaet filmgekuehlter turbinenschaufeln
,” Ph.D. thesis, DLR, Ruhr Universitaet Bochum, Bochum, Germany.
19.
Zachcial
,
A.
,
2006
,
Mischungsebenenmodellierung zur Analyse der raeumlichen Stroemung in mehrstufigen Turbomaschinenkomponenten
,
Shaker-Verlag
,
Aachen, Germany
.
20.
Giles
,
M.
,
1988
, “
Non-Reflecting Boundary Conditions for the Euler Equations
,” Rolls Royce, Technical Report.
21.
Schnell
,
R.
,
2004
, “
Numerische simulation des akustischen nahfeldes einer triebwerksgeblaesestufe
,” DLR Institut fuerAntriebstechnik, Berlin, Technical Report.
22.
Ashcroft
,
G.
,
Heitkamp
,
K.
, and
Kuegeler
,
E.
,
2010
, “
High-Order Accurate Implicit Runge-Kutta Schemes for the Simulation of Unsteady Flow Phenomena in Turbomachinery
,” 5th European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010), Lisbon, Portugal, June 14.–17.
23.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
24.
Kozulovic
,
D.
, and
Roeber
,
T.
,
2006
, “
Modelling the Streamline Curvature Effects in Turbomachinery Flows
,”
Proceedings of ASME Turbo Expo 2006: Power for Land
,
Sea and Air, Barcelona, Spain, May 8–11
,
ASME Paper No. GT2006-90265
.10.1115/GT2006-90265
25.
Kozulovic
,
D.
,
Roeber
,
T.
,
Kuegeler
,
E.
, and
Nuernberger
,
D.
,
2004
, “
Modifications of a Two-Equation Turbulence Model for Turbomachinery Fluid Flows
,” DLR Institute of Propulsion Technology, Tecchnical Report.
26.
Gaetani
,
P.
,
Persico
,
G.
,
Mora
,
A.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2011
, “
Impeller-Vaned Diffuser Interaction in a Centrifugal Compressor at the Best Efficiency Point
,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, June 6–10,
ASME Paper No. GT2011-46223
.10.1115/GT2011-46223
27.
Inoue
,
M.
, and
Cumpsty
,
N.
,
1984
, “
Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
455
467
.10.1115/1.3239588
28.
Sato
,
K.
, and
He
,
L.
,
1998
, “
Effect of Rotor-Stator Interaction on Impeller Performance in Centrifugal Compressors
,”
Proc. of ISROMAC-7
, Honolulu, HI, February 22–26, Vol. C,
A.
Muszynska
, J. A. Cox, and D. T. Nosenzo, eds., Bird Rock Pub. House, Honolulu, HI, pp.
1359
1368
.
29.
Fisher
,
E.
, and
Inoue
,
M.
,
1981
, “
A Study of Diffuser/Rotor Interaction in a Centifugal Compressor
,”
J. Mech. Eng. Sci.
,
23
(
3
), pp.
149
156
.10.1243/JMES_JOUR_1981_023_028_02
30.
Gaetani
,
P.
,
Persico
,
G.
,
Mora
,
A.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2011
, “
Impeller-Vaned Diffuser Interaction in a Centrifugal Compressor at Off Design Conditions
,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, June 6–10,
ASME Paper No. GT2011-46234
.10.1115/GT2011-46234
31.
Braeunling
,
W. J. G.
,
2009
, “
Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse
,”
Thermische Turbomaschinen, Komponenten, Emissionen und Systeme
,
Springer
,
Berlin
, pp.
859
971
.
32.
Hoshide
,
R. K.
, and
Nielsen
,
C. E.
,
1972
, “
Study of Blade Clearance Effects on Centrifugal Pumps, Final Report
,” Rocketdyne-National Aeronautics and Space Administration.
33.
Zimmermann
,
M.
,
2012
, “
Instationaere analyse eines radialverdichters mit pipe diffusor und eng gekoppeltem impellerdiffusor system
,” Master's thesis, Institute of Jet Propulsion and Turbomachinery-Aachen University, Aachen, Germany.
34.
Denton
,
J.
,
1994
, “
Loss Mechanisms in Turbomachines
,” University of Cambridge, UK, June.
35.
Wilkosz
,
B.
,
Schwarz
,
P.
,
Kunte
,
R.
,
Jeschke
,
P.
, and
Smythe
,
C.
,
2012
, “
Numerical and Experimental Investigation of an Impeller Tip Clearance Variation in a Centrifugal Compressor Stage With Pipe-Diffuser
,”
Proceedings of the DLRK 2012 Conference
, Berlin, September 10–12, Paper No. DLRK-2012-281271, p.
13
.
36.
Connell
,
S.
,
Braaten
,
M.
,
Zori
,
L.
,
Steed
,
R.
,
Hutchinson
,
B.
, and
Cox
,
G.
,
2011
, “
A Comparison of Advanced Numerical Techniques to Model Transient Flow in Turbomachinery Blade Rows
,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, June 6–10,
ASME Paper No. GT2011-45820
.10.1115/GT2011-45820
37.
Kunte
,
R.
,
2011
, “
Experimentelle und numerische untersuchung eines radialverdichters mit pipe diffusor und umlenkbeschaufelung fuer eine triebwerksanwendung
,” Ph.D. thesis, RWTH Aachen Institut fuer Strahlantriebe und Turboarbeitsmaschinen, Aachen, Germany.
38.
Dawes
,
W.
,
1994
, “
A Simulation of the Unsteady Interaction of a Centrifugal Impeller With Its Vaned Diffuser: Flows Analysis
,” ASME Paper No. 94-GT-105.
39.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
,
2004
, “
Modeling of Entropy Production in Turbulent Flows
,”
ASME J. Fluids Eng.
,
126
, pp.
1
7
.10.1115/1.1845551
40.
Schwarz
,
P.
,
Wilkosz
,
B.
,
Kunte
,
R.
,
J. S.
, and
Jeschke
,
P.
,
2012
, “
Numerical Investigation Into the Ratio Between Passage Diffuser and Vaneless Diffuser in a Centrifugal Compressor Stage
,” Deutscher Luft- und Raumfahrtkongress 2012, Berlin, September 10–12.
41.
Giles
,
M.
,
1991
, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,” UNSFLO, Technical Report.
42.
Wilkosz
,
B.
,
Schwarz
,
P.
,
Jeschke
,
P.
,
Chen
,
N.
, and
Smythe
,
C.
,
2012
, “
Numerical Investigation of the Steady Separation Including Mechanisms in a Passage Diffuser With Application of Two-Equation Turbulence Models
,”
Conference on Modelling Fluid (CMFF’12), Budapest, Hungary, September 4–7
.
43.
Runstadler
,
P. W.
, and
Dolan
,
F. X.
,
1975
,
Diffuser Data Book
,
Creare Incorporated
,
Hanover, NH
.
44.
Kunte
,
R.
,
Schwarz
,
P.
,
Wilkosz
,
B.
,
Jeschke
,
P.
, and
Smythe
,
C.
,
2013
, “
Experimental and Numerical Investigation of Tip Clearance and Bleed Effects in a Centrifugal Compressor Stage With Pipe Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
12
.10.1115/1.4007526
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.