A flow control scheme was implemented in a low-pressure turbine cascade that simultaneously mitigated profile and endwall losses using midspan vortex generator jets (VGJs) and endwall suction. The combined system had an approximate zero-net mass flux. During the design, a theoretical model was used that effectively predicted the trajectory of the passage vortex using inviscid results obtained from two-dimensional computational fluid dynamics (CFD). The model was used in the design of two flow control approaches: the removal and redirection approaches. The emphasis of the removal approach was the direct application of flow control along the passage vortex (PV) trajectory. The redirection approach attempted to alter the trajectory of the PV with the judicious placement of suction holes. A potential flow model was created to aid in the design of the redirection approach. The model results were validated using flow visualization and particle image velocimetry (PIV) in a linear turbine cascade. Detailed total pressure loss wake surveys were measured while matching the suction and VGJ mass flow rates for the removal and redirection approaches at ReCx = 25,000 and blowing ratio, B, of 2. When compared with the no control results, the addition of VGJs and endwall suction reduced the wake losses by 69% (removal) and 68% (redirection). The majority of the total pressure loss reduction resulted from the spanwise VGJs, while the suction schemes provided modest additional reductions (<2%). At ReCx = 50,000, the endwall control effectiveness was assessed for a range of suction rates without midspan VGJs. Area-averaged total pressure loss reductions of up to 28% were measured in the wake at ReCx = 50,000, B = 0, with applied endwall suction (compared to no suction at ReCx = 50,000), at which point the loss core of the PV was almost completely eliminated.

References

References
1.
Sharma
,
O.
, and
Butler
,
T.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.10.1115/1.3262089
2.
Sabatino
,
D. R.
, and
Smith
,
C. R.
,
2007
, “
Boundary Layer Influence on the Unsteady Horseshoe Vortex Flow and Surface Heat Transfer
,” ASME Turbo Expo 2007: Power by Land, Sea, and Air, Montreal, Canada, May 14–17,
ASME
Paper No. GT2007-27633.10.1115/GT2007-27633
3.
Langton
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
, pp.
21
28
.10.1115/1.3446247
4.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
,
2008
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving End Wall
,”
ASME J. Turbomach.
,
130
, p.
011001
.10.1115/1.2437218
5.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
, pp.
866
874
.10.1115/1.3230352
6.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.10.1115/1.3250586
7.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
, pp.
1
8
.10.1115/1.2841006
8.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2004
, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,” ASME Turbo Expo 2004: Power by Land, Sea, and Air, Vienna, Austria, June 14–17,
ASME
Paper No. GT2004-53964.10.1115/GT2004-53964
9.
Sauer
,
H.
,
Muller
,
R.
, and
Vogeler
,
K.
,
2000
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
,
123
, pp.
207
213
.10.1115/1.1354142
10.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2002
, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
,
124
, pp.
167
175
.10.1115/1.1460914
11.
Muller
,
R.
,
Sauer
,
H.
, and
Vogeler
,
K.
,
2002
, “
Influencing the Secondary Losses in Compressor Cascades by a Leading Edge Bulb Modification at the Endwall
,” ASME Turbo Expo 2002: Power by Land, Sea, and Air, Amsterdam, The Netherlands, June 3–6,
ASME
Paper No. GT2002-30442.10.1115/GT2002-30442
12.
Devenport
,
W. J.
,
Agarwal
,
N. K.
,
Dewitz
,
M. B.
,
Simpson
,
R. L.
, and
Poddar
,
K.
,
1990
, “
Effects of a Fillet on the Flow Past a Wing-Body Junction
,”
AIAA J.
,
28
(
12
), pp.
2017
2024
.10.2514/3.10517
13.
Devenport
,
W. J.
,
Simpson
,
R. L.
,
Dewitz
,
M. B.
, and
Agarwal
,
N. K.
,
1992
, “
Effects of a Leading-Edge Fillet on the Flow Past an Appendage-Body Junction
,”
AIAA J.
,
30
(
9
), pp.
2177
2183
.10.2514/3.11201
14.
Chung
,
J. T.
,
Simon
,
T. W.
, and
Buddhavarapu
,
J.
,
1991
, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,” ASME Paper No. 91-GT-45.
15.
Chung
,
J. T.
, and
Simon
,
T. W.
,
1993
, “
Effectiveness of the Gas Turbine Endwall Fences in Secondary Flow Control at Elevated Freestream Turbulence Levels
,” ASME Paper No. 93-GT-51.
16.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Shahpar
,
S.
,
Taylor
,
M. D.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non-Axisymmetric Turbine End Wall Design: Part I- Three-Dimensional Design System
,”
ASME J. Turbomach.
,
122
, pp.
278
285
.10.1115/1.555445
17.
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,” ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, The Netherlands, June 3–6,
ASME
Paper No. GT-2002-30339.10.1115/GT2002-30339
18.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
, pp.
651
658
.10.1115/1.1311286
19.
Doerffer
,
P.
,
Flaszynski
,
P.
, and
Magagnato
,
F.
,
2003
, “
Streamwise Vortex Interaction With a Horseshoe Vortex
,”
J. Therm. Sci.
,
12
(
4
), pp.
304
309
.10.1007/s11630-003-0035-7
20.
Rehder
,
H. J.
, and
Dannhauer
,
A.
,
2007
, “
Experimental Investigation of Turbine Leakage Flows on the Three-Dimensional Flow Field and Endwall Heat Transfer
,”
ASME J. Turbomach.
,
129
, pp.
608
618
.10.1115/1.2720484
21.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2006
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,” ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, May 8–11,
ASME
Paper No. GT-2006-90767.10.1115/GT2006-90767
22.
Philips
,
D. B.
,
Cimbala
,
J. M.
, and
Treaster
,
A. L.
,
1992
, “
Suppression of the Wing-Body Junction Vortex by Body Surface Suction
,”
J. Aircr.
,
29
(
1
), pp.
118
122
.10.2514/3.46134
23.
Gummer
,
V.
,
Goller
,
M.
, and
Swoboda
,
M.
,
2008
, “
Numerical Investigation of End Wall Boundary Layer Removal on Highly Loaded Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
130
, p.
011015
.10.1115/1.2749297
24.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressors by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
, p.
011004
.10.1115/1.2749294
25.
Johnson
,
M.
,
Ravindra
,
K.
, and
Andres
,
R.
,
1994
, “
Comparative Study of the Elimination of the Wing Fuselage Junction Vortex by Boundary Layer Suction and Blowing
,”
32nd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno NV
, January 10–13,
AIAA
Paper No. 94-0293.10.2514/6.1994-293
26.
Barberis
,
D.
,
Molton
,
P.
, and
Malaterre
,
T.
,
1998
, “
Control of 3D Turbulent Boundary Layer Separation Caused by a Wing-Body Junction
,”
Exp. Therm. Fluid Sci.
,
16
, pp.
54
63
.10.1016/S0894-1777(97)10012-7
27.
Seal
,
C. V.
, and
Smith
,
C. R.
,
1999
, “
The Control of Turbulent End-Wall Boundary Layers Using Surface Suction
,”
Exp. Fluids
,
27
, pp.
484
496
.10.1007/s003480050373
28.
Volino
,
R. J.
,
2003
, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
,”
ASME J. Turbomach.
,
125
, pp.
765
777
.10.1115/1.1626686
29.
Sondergaard
,
R.
,
Rivir
,
R.
, and
Bons
,
J.
,
2002
, “
Control of Low-Pressure Turbine Separation Using Vortex-Generator Jets
,”
J. Propul. Power
,
18
(
4
), pp.
889
895
.10.2514/2.6014
30.
Bons
,
J.
,
Pluim
,
J.
,
Gompertz
,
K.
,
Bloxham
,
M.
, and
Clark
,
J.
,
2008
, “
The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes
,” ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, June 9–13,
ASME
Paper No. GT2008-50864.10.1115/GT2008-50864
You do not currently have access to this content.