In a cooperative project between the Institute of Aircraft Propulsion Systems and MTU Aero Engines GmbH, a two-stage low pressure turbine with integrated 3D airfoil and endwall contouring is tested. The experimental data taken in the altitude test-facility study the effect of high incidence in off-design operation. Steady measurements are covering a wide range of Reynolds numbers between 40,000 and 180,000. The results are compared with steady multistage CFD predictions with a focus on the stator rows. A first unsteady simulation is taken into account as well. The CFD simulations include leakage flow paths with disk cavities modeled. Compared to design operation the extreme off-design high-incidence conditions lead to a different flow-field Reynolds number sensitivity. Airfoil lift data reveals changing incidence with Reynolds number of the second stage. Increased leading edge loading of the second vane indicates a strong cross channel pressure gradient in the second stage leading to larger secondary flow regions and a more three-dimensional flow-field. Global characteristics and area traverse data of the second vane are discussed. The unsteady CFD approach indicates improvement in the numerical prediction of the predominating flow-field.

References

References
1.
Broszat
,
D.
, and
Korte
,
D.
,
2009
, “
Validation of Turbine Noise Prediction Tools With Acoustic Rig Measurements
,”
AIAA
Paper No. 2009-3283.10.2514/6.2009-3283
2.
Broszat
,
D.
, and
Korte
,
D.
,
2011
, “
Validation of an Integrated Acoustic Absorber in a Turbine Exit Guide Vane
,”
AIAA
Paper No. 2011-2915.10.2514/6.2011-2915
3.
Ainley
,
D.
, and
Mathieson
,
G.
,
1957
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” British Aeronautical Research Council R&M Paper No. 2974.
4.
Ainley
,
D.
, and
Mathieson
,
G.
,
1955
, “
An Examination of the Flow and Pressure Losses in Blade Rows of Axial-Flow Turbines
,” British Aeronautical Research Council R&M Paper No. 2891.
5.
Moustapha
,
S.
,
Kacker
,
S.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(2), pp. 267–276.10.1115/1.2927647
6.
Benner
,
M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S.
,
1997
, “
Measurement of Secondary Flows in a Turbine Cascade at Off-Design Incidence
,”
ASME J. Turbomach.
,
119
(2), pp. 193–200.10.1115/1.2841101
7.
Hodson
,
H.
, and
Dominy
,
R.
,
1986
, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(2), pp. 201–209.10.1115/1.3262086
8.
Perdichizzi
,
A.
, and
Dossena
,
V.
,
1993
, “
Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
115
(3), pp. 383–391.10.1115/1.2929265
9.
Duden
,
A.
,
1999
, “
The Secondary Flow Field of a Turbine Cascade With 3D Airfoil Design and Endwall Contouring at Off-Design Incidence
,” ASME Paper No. 99-GT-211.
10.
Gier
,
J.
, and
Ardey
,
S.
,
2001
, “
On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine
,” ASME Paper No. 2001-GT-0197.
11.
Haselbach
,
F.
,
Harvey
,
N.
,
Read
,
S.
,
Schiffer
,
H.-P.
,
Horsman
,
M.
, and
Dressen
,
S.
,
2002
, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
,
124
(1), pp. 45–51.10.1115/1.1415737
12.
Howell
,
R.
,
Hodson
,
H.
, and
Schulte
,
V.
,
2002
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High-Lift and Ultra-High- Lift Concepts
,”
ASME J. Turbomach.
,
124
(3), pp. 385–392.10.1115/1.1457455
13.
D'Ovidio
,
A.
,
Littlewood
,
L.
, and
Congiu
F.
,
2008
, “
Comparison Between Hot Wire and 5-Hole Pressure Probe Traverse Data in a Variable Density Two-Stages Air Turbine
,”
ASME
Paper No. GT2008-50753.10.1115/GT2008-50753
14.
Gier
,
J.
,
Franke
,
M.
,
Hübner
,
N.
, and
Schröder
,
T.
,
2008
, “
Designing LP Turbines for Optimized Airfoil Lift
,”
ASME
Paper No. GT2008-51101.10.1115/GT2008-51101
15.
Küner
,
M.
,
Schneider
,
C.
,
Rose
,
M.G.
, Staudacher, S., and Gier, J.,
2010
, “
LP Turbine Reynolds Lapse Phenomena: Time Averaged Area Traverse and Multistage CFD
,”
ASME
Paper No. GT2010-23114.10.1115/GT2010-23114
16.
Kürner
,
M.
,
Reichstein
,
G. A.
, Schrack, D., Rose, M. G., Staudacher, S., Gier, J., and Engel, K.,
2011
, “
LP Turbine Reynolds Lapse: Secondary Vortices
,”
ASME
Paper No. GT2011-45557.10.1115/GT2011-45557
17.
Schinko
,
N.
,
Kürner
,
M.
,
Staudacher
,
S.
,
Rose
,
M.
,
Gier
,
J.
,
Raab
,
I.
, and
Lippl
,
F.
,
2009
, “
Das ATRD-Projekt—Ein Beispiel für die Zusammenarbeit von Industrie und Universität zur Förderung der Grundlagenforschung
,” DGLR-Congress 2009, Paper No. DGLR-2009-121156.
18.
Pretzsch
,
P.
,
1986
, “
Drucksonden
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
19.
JCGM,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” Joint Committee for Guides in Metrology Paper No. JCGM 100:2008.
20.
Eulitz
,
F.
,
Engel
,
K.
, and
Nuernberger
,
D.
,
1998
, “
On Recent Advances of a Parallel Time-Accurate Navier Stokes Solver for Unsteady Turbomachinery Flow
,”
4th ECOMAS Proceedings in Computational Fluid Dynamics
, Vol. 1(1), Part 1,
K.
Papailiou
, ed., John Wiley & Sons, New York.
21.
Franke
,
M.
,
Kuegeler
,
E.
, and
Nuernberger
,
D.
,
2005
, “
Das DLR-Verfahren TRACE: Moderne Simulationstechniken fur Turbomaschinenstromungen
,” DGLR Congress 2005, Paper No. DGLR-2005-211.
22.
Roe
,
P.
,
1997
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
135
(2), pp. 250–258.10.1006/jcph.1997.5705
23.
Davidson
,
L.
,
2011
, “
An Introduction to Turbulence Models
,” Chalmers University—Department of Thermo and Fluid Dynamics, Göteborg, Sweden, Paper No. Publication 97/2.
24.
Röber
,
T.
,
Kožlović
,
D.
,
Kügeler
,
E.
, and Nürnberger, D.,
2007
, “
Appropriate Turbulence Modelling for Turbomachinery Flows Using a Two-Equation Turbulence Model
,”
New Results in Numerical and Experimental Fluid Mechanics V
,
Springer
,
New York
, pp. 446–454.10.1007/978-3-540-33287-9_55
25.
Weber
,
A.
,
2008
, “
3D Structured Grids for Multistage Axial Turbomachines and Linear Cascades
,” Paper No. DLR IB-325-07-08.
26.
Yang
,
H.
,
Nuernberger
,
D.
, and
Nicke
,
E.
,
2003
, “
Numerical Investigation of Casing Treatment Mechanisms With a Conservative Mixed-Cell Approach
,”
ASME
Paper No. GT2003-38483.10.1115/GT2003-38483
27.
Kozulovic
,
D.
, and
Röber
,
T.
,
2006
, “
Quasi-Unsteady Transition Modelling of Periodic Wakes
,”
Turbulence, Heat and Mass Transfer
,
Begell House
,
New York
.
28.
Yang
,
H.
,
Nuernberger
,
D.
, and
Weber
,
A.
,
2002
, “
A Conservative Zonal Approach With Applications to Unsteady Turbomachinery Flows
,” DGLR Congress 2005, Paper No. DGLR-2002-073.
29.
Volino
,
R.
,
2010
, “
Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
132
(1), p. 011007.10.1115/1.3104608
30.
Kürner
,
M.
,
Rose
,
M.
,
Staudacher
,
S.
,
Gier
,
J.
,
Fiala
,
A.
, and
Patzer
,
B.
,
2012
, “
Surface Thin Film Gauge Measurements in a Two-Stage Low Pressure Turbine at Low Reynolds Number
,”
ASME
Paper No. GT2012-68906.10.1115/GT2012-68906
31.
Truckenbrodt
,
E.
,
1980
,
Fluidmechanik
,
2nd ed.
,
Springer
,
New York
.
You do not currently have access to this content.