Turbine blade tips are often the most susceptible to material failure due to the high-speed leakage flow and associated large thermal loadings. In this paper, the effect of the blade rotation and relative motion between the blade tip and shroud is studied numerically. Three different simulations have been undertaken: (1) a static case where the blade and the shroud are stationary (used as the reference case) (2) a linearly moving blade (or shroud) and (3) a rotating blade. Comparisons between cases 1 and 2 identify the effects of relative motion, while comparison between cases 2 and 3 delineate the effects of rotational Coriolis and centrifugal forces. Geometric effects were also studied through different combinations of tip gaps and squealer depths with the relative motion and rotational effects included. The calculations were done using a commercial flow solver, Fluent, using a block body-fitted mesh, Reynolds-averaged transport equations and a turbulence model. Results confirm the significant effects of the relative motion between the blade tip and shroud, and indicate that the assumption of pressure-driven leakage flows for blade tips is inappropriate. While rotational forces also play a role, the magnitude of their effects are relatively small compared to the relative motion effects. Geometric effects are also important with the lower tip clearance reducing leakage flow and allowing the tip coolant to migrate towards the SS with relative motion.

References

References
1.
Mumic
,
F.
,
Eriksson
,
D.
, and
Sunden
,
B.
,
2004
, “
On Prediction of Tip Leakage Flow and Heat Transfer in Gas Turbines
,”
ASME
Paper No. GT2004-53448.10.1115/GT2004-53448
2.
Yang
,
H.
,
Acharya
,
S.
, and
Ekkad
,
S.
,
2002
, “
Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade With a Squealer Tip
,”
ASME
Paper No. GT2002-30193.10.1115/GT2002-30193
3.
Acharya
,
S.
,
Yang
,
H.
,
Bunker
,
R.
, and
Prakash
,
C.
,
2003
, “
A Numerical Study of Heat Transfer on Blade Tips With Different Squealer Configurations
,”
ASME
Paper No. GT2003-38617.10.1115/GT2003-38617
4.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J. C.
,
Pang Lee
,
C.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2002
, “
Heat Transfer Coefficients on Squealer Tip and Near Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME
Paper No. GT2003-38907.10.1115/GT2003-38907
5.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J Turbomach.
,
125
, pp.
267
273
.10.1115/1.1554411
6.
Tang
,
B.
,
Palafox
,
P.
,
Gillespie
,
D.
,
Oldfield
,
M.
, and
Cheong
,
B.
,
2008
, “
Computational Modelling of Tip Heat Transfer to a Super-Scale Model of an Unshrouded Gas Turbine Blade
,”
ASME
Paper No. GT2008-51212.10.1115/GT2008-51212
7.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.10.1115/1.4003063
8.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.10.1115/1.2952378
9.
Yang
,
H.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2008
, “
Film-Cooling Prediction on Rotor Blade Leading Edge in 1-1/2 Turbine Stage
,”
AIAA J. Thermophys. Heat Transf.
,
51
(
2
), pp.
201
209
.10.2514/1.30624
10.
Kramer
,
G.
,
Moureaux
,
L.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2011
, “
Gas Turbine Blade Tip And Near Tip Heat Transfer With Film Cooling
,”
2011 International Gas Turbine Conference
,
Osaka, Japan
, November 13-18.
11.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
(a), “
Flow and Heat Transfer Predictions Past a Flat-Tip Blade
,”
ASME
Paper No. GT2002-30190.10.1115/GT2002-30190
12.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
(b), “
Flow and Heat Transfer Predictions Past a Squealer-Tip Blade
,”
ASME
Paper No. GT2002-30193.10.1115/GT2002-30193
13.
Acharya
,
S.
,
Yang
,
H.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
(c), “
Numerical Simulation of Film Cooling Past a Turbine Blade Tip
,”
ASME
Paper No. GT2002-30553.10.1115/GT2002-30553
14.
Ameri
,
A. A.
, and
Rigby
,
D. L.
,
1999
, “
A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,” 14th International Symposium on Air Breathing Machines, Florence, Italy, September 5–10, Paper No. NASA/CR-1999-209165.
15.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
1999
, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine, Part 2: Simulation Results
,” ASME Paper No. 99-GT-283.
16.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,” ASME Paper No. 98-GT-369.
17.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
(
4
), pp.
753
759
.10.1115/1.2841786
18.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.10.1115/1.2752188
19.
Acharya
,
S.
,
Hoda
,
A.
, and
Tyagi
,
M.
,
2001
, “
Flow and Heat Transfer Predictions of Film Cooling
,”
Ann. NY Acad. Sci.
,
934
, pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
20.
Muldoon
,
F.
, and
Acharya
,
S.
,
2006
, “
Budgets of the k-ε Model for Film Cooling and an Improved Damping Function Formulation
,”
AIAA J.
,
44
(
2
), pp.
3010
3031
.10.2514/1.20597
21.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of an Inclined Film Cooling Jet
,”
ASME J. Turbomach.
,
125
, pp.
734
742
.10.1115/1.1625397
You do not currently have access to this content.