This work proposes an automated strategy for the preliminary design of turbomachinery, based on the application of a throughflow code and of a highly flexible and efficient optimization strategy. The code solves for the circumferentially-averaged flow equations, including the effects of aerodynamic and friction forces and of blade thickness; the outcome of the code is the flow distribution on the meridional surface. The fluid-dynamic solver is coupled with the optimization tool in order to determine the “optimal” mean flow surface, as a result of a multiobjective optimization procedure, in which nonconcurrent goals are simultaneously considered. A global optimization strategy is applied, based on the combination of a Genetic Algorithm with a metamodel to tackle the computational cost of the process. The optimization method is applied to a low speed axial compressor, for which the optimization goals are the minimization of aerodynamic loss and discharge kinetic energy at the exit of the stage, as well as the uniformity of work exchange along the blade span. The method proves to match all the objectives, providing a clear improvement with respect to classical and well-established design methods. The optimization provided by the automated design is finally assessed by high-fidelity calculations performed with a fully three-dimensional CFD code on both the baseline and optimized machine configurations. Improvements are confirmed for all the goals specified in the optimization strategy, resulting in a more efficient machine.

References

References
1.
Leonard
,
O.
, and
Van Den Braembussche
,
R.
,
1992
, “
Design Method for Subsonic and Transonic Cascade With Prescribed Mach Number Distribution
,”
ASME J. Turbomach.
,
114
(
3
), pp.
553
560
.10.1115/1.2929179
2.
Demeulenaere
,
A.
,
Leonard
,
O.
, and
Van den Braembussche
,
R.
,
1997
, “
A Two-Dimensional Navier-Stokes Inverse Solver for Compressor and Turbine Blade Design
,”
J. Power Energy
,
211
(
4
), pp.
299
307
.10.1243/0957650971537204
3.
Pierret
,
S.
, and
Van den Braembussche
,
R.
,
1999
, “
Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network
,”
ASME J. Turbomach.
,
121
(
2
), pp.
326
332
.10.1115/1.2841318
4.
Rai
,
M.
,
2000
, “
Aerodynamic Design Using Neural Networks
,”
AIAA J.
,
38
(
1
), pp.
173
182
.10.2514/2.938
5.
Rai
,
M.
, and
Madavan
,
N.
,
2001
, “
Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils
,”
J. Propul. Power
,
17
(
1
), pp.
176
183
.10.2514/2.5725
6.
Coello
,
C.
,
2000
, “
An Updated Survey of GA-Based Multiobjective Optimization Techniques
,”
ACM Comput. Surveys
,
32
(
2
), pp.
109
143
.10.1145/358923.358929
7.
Lee
,
S.-Y.
, and
Kim
,
K.-Y.
,
2000
, “
Design Optimization of Axial Flow Compressor Blades With Three-Dimensional Navier–Stokes Solver
,”
KSME Int. J.
,
14
(
9
), pp.
1005
1012
.10.1007/BF03185803
8.
Oyama
,
A.
,
2004
, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier–Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp.
612
619
.10.2514/1.2290
9.
Chen
,
N.
,
Zhang
,
H.
,
Huang
,
W.
, and
Xu
,
Y.
,
2005
, “
Study on Aerodynamic Design Optimization of Turbomachinery Blades
,”
J. Therm. Sci.
,
14
(
4
), pp.
298
304
.10.1007/s11630-005-0048-5
10.
Pierret
,
S.
,
Coelho
,
R.
, and
Kato
,
H.
,
2006
, “
Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades
,”
Struct. Multidiscip. Optim.
,
33
(
1
), pp.
61
70
.10.1007/s00158-006-0033-y
11.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
, p.
031004
.10.1115/1.3144162
12.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042308
.10.1115/1.4023118
13.
Petrovic
,
M. V.
,
Dulikravich
,
G. S.
, and
Martin
,
T. J.
,
2001
, “
Optimization of Multistage Turbines Using a Through-Flow Code
,”
J. Power Energy
,
215
(
5
), pp.
559
569
.10.1243/0957650011538802
14.
Larocca
,
F.
,
2008
, “
Multiple Objective Optimization and Inverse Design of Axial Turbomachinery Blade
,”
J. Propul. Power
,
24
(
5
), pp.
1093
1099
.10.2514/1.33894
15.
Denton
,
J.
, and
Dawes
,
W.
,
1999
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
IMechE J. Mech. Eng. Sci.
,
213
, pp.
107
124
.10.1243/0954406991522211
16.
Damle
,
S. V.
,
Dang
,
T. Q.
, and
Reddy
,
D. R.
,
1998
, “
Throughflow Method for Turbomachines Applicable for all Flow Regimes
,”
ASME J. Turbomach.
,
119
(
2
), pp.
256
262
.10.1115/1.2841108
17.
Sturmayr
,
A.
, and
Hirsch
,
C.
,
1999
, “
Throughflow Model for Design and Analysis Integrated in a Three-Dimensional Navier–Stokes Solver
,”
J. Power Energy
,
213
, pp.
263
273
.10.1243/0957650991537608
18.
Simon
,
J. F.
, and
Leonard
,
O.
,
2005
, “
A Throughflow Analysis Tool Based on the Navier–Stokes Equations
,”
Proceedings of the 6th European Turbomachinery Conference
, Lille, France, March 7–11.
19.
Persico
,
G.
, and
Rebay
,
S.
,
2012
, “
A Penalty Formulation for the Throughflow Modeling of Turbomachinery
,”
Comput. Fluids
,
60
, pp.
86
98
.10.1016/j.compfluid.2012.03.001
20.
Colonna
,
P.
, and
Rebay
,
S.
,
2004
, “
Numerical Simulation of Dense Gas Flows on Unstructured Grids With an Implicit High Resolution Upwind Euler Solver
,”
Int. J. Numer. Methods Fluids
,
46
, pp.
735
765
.10.1002/fld.762
21.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
22.
Harinck
,
J.
,
Colonna
,
P.
,
Guardone
,
A.
, and
Rebay
,
S.
,
2010
, “
Influence of Thermodynamic Models in 2D Flow Simulations of Turboexpanders
,”
ASME J. Turbomach.
,
132
, p.
011001
.10.1115/1.3192146
23.
Horlock
,
J. H.
,
1971
, “
On Entropy Production in Adiabatic Flow in Turbomachines
,”
ASME J. Basic Eng.
,
93
, pp.
587
593
.10.1115/1.3425313
24.
Lieblein
,
S.
,
1965
,
Experimental Flow in 2D Cascades
,” NASA Technical Report No. SP36.
25.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1971
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
407
424
.
26.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for ORC Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
.10.1115/1.4023122
27.
Persico
,
G.
,
Rebay
,
S.
, and
Osnaghi
,
C.
,
2011
, “
A Novel Package for Turbomachinery Throughflow Analysis
,”
Proceeding of the 9th European Turbomachinery Conference
, Istanbul, Turkey, March 21–25.
28.
Giannakoglou
,
K.
,
2002
, “
Design of Optimal Aerodynamic Shapes Using Stochastic Optimization Methods and Computational Intelligence
,”
Prog. Aerosp. Sci.
,
38
(
1
), pp.
43
76
.10.1016/S0376-0421(01)00019-7
29.
iChrome Nexus
,
2012
, “
iChrome
,” http://ichrome.eu/
30.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGAII
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
31.
Simpson
,
T.
,
Poplinski
,
J.
,
Koch
,
P.
, and
Allen
,
J.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
32.
Martin
,
J.
, and
Simpson
,
T.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.10.2514/1.8650
33.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
,
5th ed.
,
Academic Press
,
New York
.
34.
Hoschek
,
J.
,
Lasser
,
D.
, and
Schumaker
,
L.
,
1996
,
Fundamentals of Computer Aided Geometric Design
,
A. K.
Peters
,
Nattick
,
MA
.
35.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
You do not currently have access to this content.