Predicting cooling flow migration and its impact on surface heat flux for a turbine operating at design-corrected conditions is a challenging task. While recent data sets have provided a baseline for comparison, they have also raised many questions about comparison methods and the proper implementation of boundary conditions. Simplified experiments are helpful for bridging the gap between the experimental and computational worlds to develop the best procedures for generating predictions and correctly comparing them to experiments. To this end, a flat-plate configuration has been developed that replicates the cooling hole pattern of the pressure side of a high-pressure turbine blade. The heat transfer for this configuration is investigated for a range of flow properties of current interest to the industry using a medium-duration blowdown facility. Heat-flux measurements are obtained using double-sided Kapton heat-flux gauges arrayed in two rows in the axial direction along the centerline of the hole pattern. Gauges are located upstream of the holes, in between rows of holes, and extending far downstream of the last row of holes. New parameters are proposed for analyzing the data including a corrected Stanton number and the length-corrected heat flux reduction parameter. These parameters are used for exploring the influence of Reynolds number and blowing ratio on local heat transfer. In addition, the temperatures of the main flow and the test section walls were varied to determine the effect of cooling on the local adiabatic wall temperature and to enable comparisons using the adiabatic cooling effectiveness.

References

References
1.
Southworth
,
S.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Chen
,
J. P.
,
Heitland
,
G.
, and
Liu
,
J.
,
2009
, “
Time-Accurate Predictions for a Fully Cooled High-Pressure Turbine Stage—Part I: Comparison of Predictions with Data
,”
ASME J. Turbomach.
,
131
(
3
), p.
031003
.10.1115/1.2985075
2.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Southworth
,
S. A.
,
Chen
,
J.-P.
,
Heitland
,
G.
, and
Liu
,
J.
,
2009
, “
Time-Accurate Predictions for a Fully Cooled High-Pressure Turbine Stage—Part II: Methodology for Quantifications of Prediction Quality
,”
ASME J. Turbomach.
,
131
(3), p.
031004
.10.1115/1.2985076
3.
Allan
,
W. D.
,
Ainsworth
,
R.
, and
Thorpe
,
S.
,
2008
, “
Unsteady Heat Transfer Measurements From Transonic Turbine Blades at Engine Representative Conditions in a Transient Facility
,”
ASME J. Eng. Gas Turbines Power
,
130
(4), p. 041901.10.1115/1.2898836
4.
Kahveci
,
H. S.
,
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2013
, “
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine—Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects
,”
ASME J. Turbomach.
,
135
(2), p.
021027
.10.1115/1.4006775
5.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.10.1115/1.2370748
6.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine—Part I: Influence of Cooling Variation
,”
ASME J. Turbomach.
,
134
(3), p.
031014
.10.1115/1.4003173
7.
Kahveci
,
H. S.
,
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2013
, “
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine—Part II: Effect of Cooling Variation on Vane Airfoil and Inner End Wall
,”
ASME J. Turbomach.
,
135
(2), p.
021028
.10.1115/1.4006776
8.
Abhari
,
R. S.
, and
Epstein
,
A. H.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(
1
), pp.
63
70
.10.1115/1.2928279
9.
Berhe
,
M. K.
, and
Patankar
,
S. V.
,
1999
, “
Curvature Effects on Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
121
(4), pp.
781
791
.10.1115/1.2836732
10.
Mouzon
,
B. D.
,
Albert
,
J. E.
,
Terrell
,
E. J.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,” ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno-Tahoe, NV, June 6–9,
ASME
Paper No. GT2005-69002, pp. 825–832.10.1115/GT2005-69002
11.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(4), pp.
814
825
.10.1115/1.2840939
12.
Jumper
,
G. W.
,
Elrod
,
W. C.
, and
Rivir
,
R. B.
,
1991
, “
Film Cooling Effectiveness in High-Turbulence Flow
,”
ASME J. Turbomach.
,
113
(3), pp.
479
483
.10.1115/1.2927899
13.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(3), pp.
442
449
.10.1115/1.2927894
14.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
102
112
.10.1115/1.555433
15.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
122
132
.10.1115/1.555435
16.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part IV—Compound-Angle Injection with Shaped Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
133
145
.10.1115/1.555419
17.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interactions of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(2), pp.
237
246
.10.1115/1.1731395
18.
Bunker
,
R. S.
,
2010
, “
Gas Turbine Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.10.1615/HeatTransRes.v41.i6.40
19.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
113
121
.10.1115/1.555434
20.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(3), pp.
580
586
.10.1115/1.2841161
21.
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1986
, “
Flat-Plate Film Cooling With Steam Injection Through One Row and Two Rows of Inclined Holes
,”
ASME J. Turbomach.
,
108
(1), pp.
137
144
.10.1115/1.3262013
22.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
23.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Mathison
,
R. M.
,
Troha
,
W.
,
Vander Hoek
,
T.
, and
Riahi
,
A.
,
2012
, “
Aeroperformance Measurements for a Fully Cooled High-Pressure Turbine Stage
,” ASME Turbo Expo, Copenhagen, June 11–15, ASME Paper No. GT2012-69941.
24.
Çengel
,
Y. A.
,
2007
,
Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
25.
Haldeman
,
C. W.
,
Dunn
,
M. G.
, and
Mathison
,
R. M.
,
2012
, “
Fully-Cooled Single Stage HP Transonic Turbine—Part II: Influence of Cooling Mass Flow Changes and Inlet Temperature Profiles on Blade and Shroud Heat-Transfer
,”
ASME J. Turbomach.
,
134
(3), p. 031011.10.1115/1.4002968
26.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
8th ed.
,
Springer
,
Berlin,
pp.
371
373
.
27.
Ligrani
,
P. M.
, and
Ramsey
,
A. E.
,
1997
, “
Film Cooling From Spanwise-Oriented Holes in Two Staggered Rows
,”
ASME J. Turbomach.
,
119
(3), pp.
562
567
.10.1115/1.2841158
28.
Garg
,
V. K.
,
2000
, “
Heat Transfer on a Film Cooled Rotating Blade
,”
Int. J. Heat Fluid Flow
,
21
(2), pp.
134
145
.10.1016/S0142-727X(99)00072-7
29.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Joslyn
,
H. D.
,
1980
, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
,
102
(1), pp.
81
87
.10.1115/1.3230238
30.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1991
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
114(4), pp. 828–834.10.1115/1.2928036
You do not currently have access to this content.