This paper presents experimental investigations on flat plate film-cooling in combination with a ribbed cooling channel. The effect of rib placement on the film-cooling injection and the flow in the cooling channel was studied. The velocity fields were measured using optical laser measurement techniques including LDA (laser doppler anemometry) and PIV (particle image velocimetry). A row of three cylindrical film holes is placed in the center rib segment of the cooling channel. The dimensionless rib-to-hole position s/D is varied from 4.5 to 10.5. The investigations are conducted at isothermal conditions for a variation of the coolant Reynolds number Rec,Dh from 10,000 up to 60,000 and for three blowing rates M = 0.5, 0.75, and 1.00. The flow field results for the film-cooling injection showed only a small influence of the rib placement. Due to different coolant-to-main flow pressure ratios across the row, a slight nonuniform share of coolant flow occurs. Intense streamwise mixing and decay of the turbulence in the film jet was observed within the first 10 hole diameters. Enhancement of the turbulence intensity inside the jet core was found with increasing coolant Reynolds numbers. Inside the internal cooling channel, the flow field showed significant influence of the rib position which is most pronounced at low Reynolds number (Rec,Dh = 10,000) and high blowing ratios (M = 1.0). The effect becomes significantly smaller when the Reynolds number is increased. This is mainly attributed to the strongly increasing channel mass flow which equals to a decreasing suction ratio SR = uh/uc of the holes. The experimental results are compared to comprehensive numerical simulations.

References

References
1.
Weigand
,
B.
,
Semmler
,
K.
,
von Wolfersdorf
,
J.
,
2001
, “
Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines
,”
Ann. New York Acad. Sci.
,
934
, pp.
179
193
.10.1111/j.1749-6632.2001.tb05851.x
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
, pp.
595
607
.10.1016/0017-9310(74)90007-6
3.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
, pp.
580
586
.10.1115/1.2841161
4.
Wilfert
,
G.
, and
Wolff
,
S.
,
2000
, “
Influence of Internal Flow on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
122
, pp.
327
333
.10.1115/1.555449
5.
Kissel
,
H. P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Ungewickell
,
A.
,
2007
, “
An Experimental and Numerical Investigation of the Effect of Cooling Channel Crossflow on Film Cooling Performance
,”
ASME
Paper No. GT2007-27102.10.1115/GT2007-27102
6.
Burd
,
S.
, and
Simon
,
T.
,
1997
, “
The Influence of Coolant Supply Geometry on Film Cooling Exit Flow and Surface Adiabatic Effectiveness
,” ASME Paper No. 97-GT-026.
7.
Gritsch
,
M.
,
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Sharp
,
E.
,
2000
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
122
, pp.
146
152
.10.1115/1.555436
8.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
, pp.
533
540
.10.1115/1.2819277
9.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Measurements in a Turbulated Passage With Internal Crossflow
,”
ASME J. Turbomach.
,
123
, pp.
774
780
.10.1115/1.1397307
10.
Heneka
,
C.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2010
, “
Effect of Internal Rib Configurations on the Discharge Coefficient of a 30-Degree Inclined Film Cooling Hole
,”
Heat Transfer Res.
,
41
(
7
), pp.
769
786
.10.1615/HeatTransRes.v41.i7.60
11.
Kunze
,
M.
,
Preibisch
,
S.
,
Vogeler
,
K.
,
Landis
,
K.
, and
Heselhaus
,
A.
,
2008
, “
A New Test Rig for Film Cooling Experiments on Turbine Endwalls
,”
ASME
Paper No. GT2008-51096.10.1115/GT2008-51096
12.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
2002
,
Data Reduction and Error Analysis for the Physical Sciences
,
3rd ed.
,
McGraw Hill
,
New York
.
13.
Müller
,
R.
,
Mailach
,
R.
,
Lehmann
,
I.
, and
Sauer
,
H.
,
1999
, “
Flow Phenomena Inside the Rotor Blade Passages of Axial Compressors
,”
Proceedings of the 14th International Symposium on Airbreathing Engines
,
Florence, Italy
, September 6–10, Paper No. AIAA99-IS-084.
14.
Zhang
,
Z.
,
2010
,
LDA Application Methods
,
Springer-Verlag
,
Berlin-Heidelberg
.
15.
Bertrand
,
C.
,
Desevaux
,
P.
, and
Prenel
,
J. P.
,
1993
, “
Micropositioning of a Measuring Volume in Laser Doppler Anemometry
,”
Exp. Fluids
,
16
, pp.
70
72
.10.1007/BF00188510
16.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
17.
Lemmon
,
E. W.
,
Jacobson
,
R. T.
,
Penoncello
,
S. G.
, and
Friend
,
D. G.
,
2000
, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon and Oxygen From 60 to 2000 K at Pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
3
), pp.
331
385
.10.1063/1.1285884
18.
Lemmon
,
E. W.
, and
Jacobson
,
R. T.
,
2004
, “
Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon and Air
,”
Int. J. Thermophys.
,
25
(
1
), pp.
21
69
.10.1023/B:IJOT.0000022327.04529.f3
19.
Wang
,
L.
,
Salewski
,
M.
, and
Sundn
,
B.
,
2010
, “
Turbulent Flow in a Ribbed Channel: Flow Structures in the Vicinity of a Rib
,”
Exp. Therm. Fluid Sci.
,
34
, pp.
165
176
.10.1016/j.expthermflusci.2009.10.005
You do not currently have access to this content.