Numerical simulations of turbine rim seal experiments are conducted with a time-dependent, 360 deg computational fluid dynamics (CFD) model of the complete turbine stage with a rim seal and cavity to increase understanding of the rim seal ingestion physics. The turbine stage has 22 vanes and 28 blades and is modeled with a uniform flow upstream of the vane inlet, a pressure condition downstream of the blades, and three coolant flow conditions previously employed during experiments at Arizona State University. The simulations show the pressure fields downstream of the vanes and upstream of the blades interacting to form a complex pressure pattern above the rim seal. Circumferential distributions of 15 to 17 sets of ingress and egress velocities flow through the rim seal at the two modest coolant flow rate conditions. These flow distributions rotate at approximately wheel speed and are not equal to the numbers of blades or vanes. The seal velocity distribution for a high coolant flow rate with little or no ingestion into the stator wall boundary layer is associated with the blade pressure field. These pressure field characteristics and the rim seal ingress/egress pattern provide new insight to the physics of rim seal ingestion. Flow patterns within the rim cavity have large cells that rotate in the wheel direction at a slightly slower speed. These secondary flows are similar to structures noted in previous a 360 deg model and large sector models but not obtained in a single blade or vane sector model with periodic boundary condition at sector boundaries. The predictions of pressure profiles, sealing effectiveness, and cavity velocity components are compared with experimental data.

References

References
1.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
, p.
021005
.10.1115/1.2950053
2.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
,
Gary
,
D.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 1: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.10.1115/1.4006609
3.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.-Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.10.1115/1.4002423
4.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 94-2703.10.2514/6.1994-2703
5.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
,
Lapointe
, S.
,
Caron
,
J.-F.
, and
Marini
,
R.
,
2010
, “
Simulation of Flow Ingestion and Related Structures in a Turbine Cavity
,”
ASME
Paper No. GT2010-22729.10.1115/GT2010-22729
6.
Zhou
,
K.
,
Wilson
,
M.
,
Lock
,
G.
, and
Owen
,
J. M.
,
2011
, “
Computation of Ingestion Through Gas Turbine Rim Seals
,”
ASME
Paper No. GT2011-45314.10.1115/GT2011-45314
7.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2003
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME
Paper No. GT2003-38368.10.1115/GT2003-38368
8.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.10.1115/GT2004-53829
9.
Boudet
,
J.
,
Autef
,
N. D.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(
1098
), pp.
373
383
.
10.
Boutet-Blais
,
G.
,
Lefrancois
,
J.
,
Dumas, G., Julien
,
S.
,
Harvey
,
J.-F.
,
Marini
,
R.
,
Caron
,
J.-F.
,
2011
, “
Passive Tracer Validity for Cooling Effectiveness Through Flow Computation in a Turbine Rim Seal Environment
,”
ASME
Paper No. GT2011-45654.10.1115/GT2011-45654
You do not currently have access to this content.