A Defense Advanced Research Projects Agency (DARPA)-funded multicolor pyrometry (MCP) experiment was carried out on a government-provided aircraft engine to study the nature of hot particulate bursts generated from the combustor at certain engine conditions. These bursts of hot particulates lead to intermittent high-voltage signal output from the line-of-sight (LOS) pyrometer that is ultimately detected and used by the onboard digital engine controller (DEC). The investigation used a high-speed MCP system designed to detect bursts and identify their properties. Results of the radiant temperature, multicolor temperature, and apparent emissivity are presented. The results indicated that the apparent emissivity calculated during the signal burst was lower than that of the blade. The root cause for the signal burst was identified as soot particles generated as a by-product of combustion under certain conditions. This conclusion was drawn based on both experimental and simulation results. Technical strategies to separate, reduce, or remove the burst signal are proposed.

References

References
1.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
, pp.
873
881
.10.1088/0957-0233/13/6/307
2.
Kerr
,
C.
, and
Ivey
,
P.
, 2004, “
Optical Pyrometry for Gas Turbine Aeroengines
,”
Sensor Rev.
,
24
(
4
), pp.
378
386
.10.1108/02602280410558412
3.
Rothman
,
L. S.
,
Jacquemart
,
D.
,
Barbe
,
A.
,
Benner
,
D. C.
,
Birk
,
M.
,
Brown
,
L. R.
,
Carleer
,
M. R.
,
Chackerian
,
C.
, Jr.
,
Chance
,
K.
,
Coudert
,
L. H.
,
Dana
,
V.
,
Devi
,
V. M.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Hartmann
,
J.-M.
,
Jucks
,
K. W.
,
Maki
,
A. G.
,
Mandin
,
J.-Y.
,
Massie
,
S. T.
,
Orphal
,
J.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Tennyson
,
J.
,
Tolchenov
,
R. N.
,
Toth
,
R. A.
,
Vander Auwera
,
J.
,
Varanasi
,
P.
, and
Wagner
,
G.
,
2005
, “
The HITRAN 2004 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Rad. Transf.
,
96
(2), pp.
139
204
.10.1016/j.jqsrt.2004.10.008
4.
Fu
,
T.
,
Wang
,
Z.
, and
Cheng
,
X.
,
2010
, “
Temperature Measurements of Diesel Fuel Combustion With Multicolor Pyrometry
,”
ASME J. Heat Transf.
,
132
, p. 051602.10.1115/1.4000467
5.
Cassady
,
L. D.
, and
Choueiri
,
E. Y.
,
2003
, “
High Accuracy Multi-Color Pyrometry for High Temperature Surfaces
,”
28th International Electric Propulsion Conference
,
Toulouse, France
, March 17–21, Paper No. IEPC-03-79.
6.
Estevadeordal
,
J.
,
Nirmalan
,
N.
,
Wang
,
G.
, and
Summerville
,
L.
,
2011
, “
Multi-Color Pyrometry Techniques for Characterization of Spall in Heavy Duty Gas Turbine Engines
,”
42nd AIAA Thermophysics Conference
,
Honolulu, HI
, June 27–30,
AIAA
Paper No. 2011-3781.10.2514/6.2011-3781
7.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
, New York.
8.
Khan
,
M. A.
,
Allemand
,
C.
, and
Eagar
,
T. W.
,
1991
, “
Noncontact Temperature Measurement. I. Interpolation Based Techniques
,”
Rev. Sci. Instrum.
,
62
(
2
), pp.
392
402
.10.1063/1.1142133
9.
Khan
,
M. A.
,
Allemand
,
C.
, and
Eagar
,
T. W.
,
1991
, “
Noncontact Temperature Measurement. II. Least Squares Based Techniques
,”
Rev. Sci. Instrum.
,
62
(
2
), pp.
403
409
.10.1063/1.1142134
10.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
,
1990
, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. Roy. Soc. A
,
430
(
1880
), pp.
577
591
.10.1098/rspa.1990.0107
You do not currently have access to this content.