A detailed aero performance measurement program utilizing fully cooled engine hardware (high-pressure turbine stage) supplied by Honeywell Aerospace Advanced Technology Engines is described. The primary focus of this work was obtaining relevant aerodynamic data for a small turbine stage operating at a variety of conditions, including changes in operating conditions, geometry, and cooling parameters. The work extraction and the overall stage performance for each of these conditions can be determined using the measured acceleration rate of the turbine disk, the previously measured moment of inertia of the rotating system, and the mass flow through the turbine stage. Measurements were performed for two different values of tip/shroud clearance and two different blade tip configurations. The vane and blade cooling mass flow could be adjusted independently and set to any desired value, including totally off. A wide range of stage pressure ratios, coolant to free stream temperature ratios, and corrected speeds were used during the course of the investigation. A combustor emulator controlled the free stream inlet gas temperature, enabling variation of the temperature ratios and investigation of their effects on aero performance. The influence of the tip/shroud gap is clearly seen in this experiment. Improvements in specific work and efficiency achieved by reducing the tip/shroud clearance depend upon the specific values of stage pressure ratio and corrected speed. The maximum change of 3%–4% occurs at a stage pressure ratio and corrected speed greater than the initial design point intent. The specific work extraction and efficiency for two different blade tip sets (one damaged from a rub and one original) were compared in detail. In general, the tip damage only had a very small effect on the work extraction for comparable conditions. The specific work extraction and efficiency were influenced by the presence of cooling gas and by the temperature of the cooling gas relative to the free stream gas temperature and the metal temperature. These same parameters were influenced by the magnitude of the vane inlet gas total temperature relative to the vane metal temperature and the coolant gas temperature.

References

References
1.
Kurzke
,
J.
,
2002
, “
Performance Modeling Methodology: Efficiency Definitions for Cooled Single and Multistage Turbines
,”
ASME Turbo Expo
,
Amsterdam
, June 3–6,
ASME
Paper No. GT2002-30497.10.1115/GT2002-30497
2.
Young
,
J. B.
, and
Horlock
,
J. H.
,
2006
, “
Defining the Efficiency of a Cooled Turbine
,”
ASME J. Turbomach.
,
128
, pp.
658
667
.10.1115/1.2218890
3.
Lim
,
C. H.
,
Pullan
,
G.
, and
Northall
,
J.
,
2012
, “
Estimating the Loss Associated With Film Cooling for a Turbine Stage
,”
ASME J. Turbomach.
,
134
(
2
), p.
021011
.10.1115/1.4003255
4.
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Ito
,
E.
,
1989
, “
Turbine Aerodynamic Performance Measurements in Short Duration Facilities
,”
AIAA
Paper No. 89-2690.10.2514/6.1989-2690
5.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Lotsof
,
J.
,
MacArthur
,
C. D.
, and
Cohrs
,
B.
,
1991
, “
Uncertainty Analysis of Turbine Aerodynamic Performance Measurements in Short Duration Test Facilities
,”
AIAA/SAE/ASME 27th Joint Propulsion Conference
, Sacramento, CA, June 24–26,
AIAA
Paper No. 91-2131.10.2514/6.1991-2131
6.
Keogh
,
R. C.
,
Guenette
,
G. R.
, and
Sommer
,
T. P.
,
2000
, “
Aerodynamic Performance Measurements of a Fully-Scaled Turbine in a Short-Duration Facility
,”
ASME Turbo Expo
,
Munich
, May 8–11, ASME Paper No. 2000-GT-486.
7.
Keogh
,
R. C.
,
Guenette
,
G. R.
,
Spadaccini
,
C. M.
, and
Florjaancic
,
S.
,
2002
, “
Aerodynamic Performance Measurements of a Film-Cooled Turbine Stage: Experimental Results
,”
ASME Turbo Expo 2002
,
Amsterdam
, June 3–6,
ASME
Paper No. GT2002-30344.10.1115/GT2002-30344
8.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Experimental Investigation Of Vane Clocking in a One and One-Half Stage High Pressure Turbine
,”
ASME J. Turbomach.
,
127
, pp.
512
521
.10.1115/1.1861915
9.
Haldeman
,
C. W.
,
2003
, “
An Experimental Investigation of Clocking Effects on Turbine Aerodynamics Using a Modern 3-D One and One-Half Stage High Pressure Turbine for Code Verification and Flow Model Development
,” Ph.D. dissertation,
Department of Aeronautical and Astronautical Engineering
,
Ohio State University, Columbus, OH
.
10.
Atkins
,
N. R.
,
Miller
,
R. J.
, and
Ainsworth
,
R. W.
,
2004
, “
The Development of Aerodynamic Performance Measurements in a Transient Test Facility
,”
ASME Turbo Expo
,
Vienna
, June 14–17,
ASME
Paper No. GT2004-53813.10.1115/GT2004-53813
11.
Denos
,
R.
,
Paniagua
,
G.
,
Yasa
,
T.
, and
Fortugno
,
E.
,
2006
, “
Determination of the Efficiency of a Cooled HP Turbine in a Compression Tube Facility
,”
ASME Turbo Expo
,
Barcelona
, May 8–11,
ASME
Paper No. GT2006-90460.10.1115/GT2006-90460
12.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
, and
de la Loma
,
A.
,
2010
, “
Aerothermal Impact of Stator-Rim Flow and Rotor Platform Film Cooling on a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
132
(
2
), p.
021006
.10.1115/1.3142859
13.
Beard
,
P. F.
,
Povey
,
T.
, and
Chana
,
K. S.
,
2010
, “
Turbine Efficiency Measurement System for the QinetiQ Turbine Test Facility
,”
ASME J. Turbomach.
,
132
, p.
011002
.10.1115/1.3066271
14.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2007
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
,
129
, pp.
303
310
.10.1115/1.2162592
15.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.10.1115/1.4000578
16.
Rosic
,
B.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part I: Shroud Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041001
.10.1115/1.2777201
17.
Rosic
,
B.
,
Denton
,
J. D.
,
Curtis
,
E. M.
, and
Peterson
,
A. T.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part II: Exit Cavity Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041002
.10.1115/1.2777202
18.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schüpbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
.10.1115/1.3106706
19.
Schüpbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part II: Time-Resolved Flow Physics
,”
ASME J. Turbomach.
,
132
(
2
), p.
021008
.10.1115/1.3103926
20.
König
,
S.
,
Stoffel
,
B.
, and
Schobeiri
,
M. T.
,
2009
, “
Experimental Investigation of the Clocking Effect in a 1.5-Stage Axial Turbine—Part I: Time-Averaged Results
,”
ASME J. Turbomach.
,
131
(
2
), p.
021003
.10.1115/1.2948968
21.
Dickens
,
T.
, and
Day
,
I.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.10.1115/1.4001226
22.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
,
2008
, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part I: Experimental Approach
,”
ASME J. Turbomach.
,
130
(
2
), p. 021015.10.1115/1.2750676
23.
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2004
, “
Design, Construction and Operation of a Combustor Emulator for Short-Duration High-Pressure Turbine Experiments
,”
AIAA Joint Propulsion Conference
,
Fort Lauderdale, FL
, July 11–14,
AIAA
Paper No. 2004-3829.10.2514/6.2004-3829
24.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
,
2008
, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part II: Experimental Results
,”
ASME J. Turbomach.
,
130
(
2
), p. 021016.10.1115/1.2750678
25.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Hanes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
, pp.
1
7
.10.1115/1.3262231
26.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analysis of Heat Flux Data in a Turbine Stage—Part II: Discussion of Results and Comparison with Predictions
,”
ASME J. Eng. Power
,
106
, pp.
234
240
.10.1115/1.3239540
27.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analysis of Heat Flux Data in a Turbine Stage—Part I: Description of Experimental Apparatus and Data Analysis
,”
ASME Eng. Power
,
106
, pp.
229
233
.10.1115/1.3239539
28.
Dunn
,
M. G.
,
Kim
,
J.
, and
Rae
,
W. J.
,
1997
, “
Investigation of the Heat-Island Effect for Heat-Flux Measurements in Short-Duration Facilities
,”
ASME J. Turbomach.
,
119
, pp.
753
760
.10.1115/1.2841185
29.
Haldeman
,
C.W.
, and
Dunn
,
M. G.
,
1998
, “
High-Accuracy Turbine Performance Measurements in Short-Duration Facilities
,”
ASME J. Turbomach.
,
120
, pp.
1
9
.10.1115/1.2841382
30.
Haldeman
,
C. W.
,
Dunn
,
M. G.
, and
Mathison
,
R. M.
,
2010
, “
Fully-Cooled Single Stage HP Transonic Turbine—Part I: Influence of Cooling Mass Flow Variations and Inlet Temperature Profiles on Blade Internal and External Aerodynamics
,”
ASME J. Turbomach.
,
134
(
3
), p.
031010
.10.1115/1.4002967
You do not currently have access to this content.