An experimental investigation of a turbine stage featuring very high end wall angles is presented. The initial turbine design did not achieve a satisfactory performance and the difference between the design predictions and the test results was traced to a large separated region on the rear suction-surface. To improve the agreement between computational fluid dynamics (CFD) and experiment, it was found necessary to modify the turbulence modeling employed. The modified CFD code was then used to redesign the vane, and the changes made are described. When tested, the performance of the redesigned vane was found to have much closer agreement with the predictions than the initial vane. Finally, the flowfield and performance of the redesigned stage are compared to a similar turbine, designed to perform the same duty, which lies in an annulus of moderate end wall angles. A reduction in stage efficiency of at least 2.4% was estimated for the very high end wall angle design.

References

References
1.
Axelsson
,
L.-U.
, and
Johansson
,
T. G.
,
2008
, “
Experimental Investigation of the Time-Averaged Flow in an Intermediate Turbine Duct
,”
ASME
Paper No. GT2008-50829.10.1115/GT2008-50829
2.
Göttlich
,
E.
,
Marn
,
A.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Heitmeir
,
F.
,
2007
, “
Experimental Investigation of the Flow Through an Aggressive Intermediate Turbine Duct Downstream of a Transonic Turbine Stage
,”
Proceedings of the 7th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Athens, Greece, March 5-9.
3.
Marn
,
A.
,
Göttlich
,
E.
,
Malzacher
,
F. J.
, and
Pirker
,
H. P.
,
2012
, “
The Effect of Rotor Tip Clearance Size Onto the Separated Flow Through a Super-Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051019
.10.1115/1.4004446
4.
Göttlich
,
E.
,
Marn
,
A.
,
Pecnik
,
R.
,
Malzacher
,
F. J.
,
Schennach
,
O.
, and
Pirker
,
H. P.
,
2007
, “
The Influence of Blade Tip Gap Variation on the Flow Through an Aggressive S-Shaped Intermediate Turbine Duct Downstream of a Transonic Turbine—Part 2: Time-Resolved Results and Surface Flow
,”
ASME
Paper No. GT2007-28069. 10.1115/GT2007-28069
5.
Sanz
,
W.
,
Kelterer
,
M.
,
Pecnik
,
R.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2009
, “
Numerical Investigation of the Effect of Tip Leakage Flow on an Aggressive S-Shaped Intermediate Turbine Duct
,”
ASME
Paper No. GT2009-59535.10.1115/GT2009-59535
6.
Marn
,
A.
,
Göttlich
,
E.
,
Cadrecha
,
D.
, and
Pirker
,
H. P.
,
2009
, “
Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept
,”
ASME J. Turbomach.
,
131
(
4
), p.
041014
.10.1115/1.3070578
7.
Wallin
,
F.
, and
Eriksson
,
L.-E.
,
2008
, “
Design of an Aggressive Flow-Controlled Turbine Duct
,”
ASME
Paper No. GT2008-51202.10.1115/GT2008-51202
8.
Santner
,
C.
,
Göttlich
,
E.
,
Marn
,
A.
,
Hubinka
,
J.
, and
Paradiso
,
B.
,
2012
, “
The Application of Low-Profile Vortex Generators in an Intermediate Turbine Diffuser
,”
ASME J. Turbomach.
,
134
(
1
), p.
011023
.10.1115/1.4003718
9.
Couey
,
P. T.
,
McKeever
,
C. W.
,
Malak
,
M. F.
,
Balamurugan
,
S.
,
Raju Veeraraghava
,
H.
, and
Dhinagaran
,
R.
,
2010
, “
Computational Study of Geometric Parameter Influence on Aggressive Inter-turbine Duct Performance
,”
ASME
Paper No. GT2010-23604.10.1115/GT2010-23604
10.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1965
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical or Annular Cross-Section
,” Fluid Mechanics of Internal Flow, G. Sovran, ed., Elsevier, Amsterdam, pp. 270-319.
11.
Cranstone
,
A. W.
,
Pullan
,
G.
,
Curtis
,
E. M.
, and
Bather
,
S.
,
2012
, “
Aerodynamic Design of High Endwall Angle Turbine Stages—Part 1: Methodology Development
,” ASME Paper No. GT2012-68705.
12.
Pullan
,
G.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2006
, “
Improving the Performance of a Turbine With Low Aspect Ratio Stators by Aft-Loading
,”
ASME J. Turbomach.
,
128
(
3
), pp. 492–499.10.1115/1.2182000
13.
Yoon
,
S.
,
Denton
,
J. D.
,
Curtis
,
E. M.
,
Longley
,
J. P.
, and
Pullan
,
G.
,
2009
, “
Improving Intermediate Pressure Turbine Performance by Using a Non-orthogonal Stator
,”
ASME
Paper No. GT2009-59415.10.1115/GT2009-59415
14.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp. 18–26.10.1115/1.2927983
15.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.10.1115/1.4001192
16.
Denton
,
J. D.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance: A Computational Study
,”
TASK Quart.
,
6
(
1
), pp.
7
23
.
17.
Dunkley
,
M. J.
,
1998
, “
The Aerodynamics of Intermediate Pressure Turbines
,” Ph.D. thesis,
Cambridge University
, Cambridge, UK.
18.
Pullan
,
G.
,
2001
, “
An Experimental and Computational Study of a Shed Vortex in a Turbine Stage
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
19.
Reid
,
K.
,
2005
, “
Effect of Leakage Flows on Turbine Performance
,” Ph.D. thesis,
University of Cambridge
, Cambridge, UK.
20.
Yoon
,
S.
,
2008
, “
Advanced Design of Intermediate Pressure Turbines for Aeroengines
,” Ph.D. thesis,
Cambridge University
, Cambridge, UK.
21.
Rosic
,
B.
, and
Xu
,
L.
,
2012
, “
Blade Lean and Shroud Leakage Flows in Low Aspect Ratio Turbines
,”
ASME J. Turbomach.
,
134
(
3
), p.
031003
.10.1115/1.3106002
You do not currently have access to this content.