Reynolds-averaged Navier–Stokes (RANS) equations with blade blockage and blade force source terms are solved in the meridional plane of complete axial flow turbomachinery using a finite-volume scheme. The equations of the compressible actuator disk (AD) are introduced to modify the evaluation of the convective fluxes at the leading and trailing edges (LEs and TEs). An AD behaves as a compact blade force which instantaneously turns the flow with no production of unphysical entropy. This avoids unphysical incidence loss across the LE discontinuity and allows for application of all of the desired deviation at the TE. Unlike previous treatments, the model needs no handmade modification of the throughflow (TF) surface and does not discriminate between inviscid and viscous meridional flows, which allows for coping with strong incidence gradients through the annulus wall boundary layers and with secondary deviation. This paper derives a generalized blade force term that includes the contribution of the LE and TE ADs in the divergence form of the TF equations and leads to generalized definitions of blade load, blade thrust, shaft torque, and shaft power. In analyzing a linear flat plate cascade with an incidence of 32 deg and a deviation of 21 deg, the proposed model provided a 105 reduction of unphysical total pressure loss compared to the numerical solution with no modeling. The computed mass flow rate, blade load, and blade thrust showed excellent agreement with the theoretical values. The complete RANS TF solver was used to analyze a four-stage turbine in design and off-design conditions with a spanwise-averaged incidence of up to 2 deg and 43 deg, respectively. Compared to a traditional streamline curvature solution, the RANS solution with incidence and deviation modeling provided a 0.1 to 0.7% accurate prediction of mass flow rate, shaft power, total pressure ratio, and adiabatic efficiency in both the operating conditions. It also stressed satisfactory agreement concerning the spanwise distributions of flow angle and Mach number at LEs and TEs. In particular, secondary deviation was effectively predicted. The RANS solution with no modeling showed acceptable performance prediction only in design conditions and could introduce no deviation.

References

References
1.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1999
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
.10.1243/0954406991522211
2.
Smith
,
L. H.
,
1966
, “
The Radial-Equilibrium Equation of Turbomachinery
,”
Trans. ASME J. Eng. Power
,
88
(
1
), pp.
1
12
.10.1115/1.3678471
3.
Marsh
,
H.
,
1966
, “
A Digital Computer Program for the Through Flow Fluid Mechanics in an Arbitrary Turbo Machine Using a Matrix Method
,” ARC R&M Report No. 3509.
4.
Spurr
,
A.
,
1980
, “
The Prediction of 3D Transonic Flow in Turbomachinery Using a Combined Throughflow and Blade-to-Blade Time Marching Method
,”
Int. J. Heat Fluid Flow
,
2
(
4
), pp.
189
199
.10.1016/0142-727X(80)90013-2
5.
Yao
,
Z.
, and
Hirsch
,
C.
,
1995
, “
Throughflow Model Using 3D Euler or Navier–Stokes Solvers
,”
Turbomachinery—Fluid Dynamic and Thermodynamic Aspects, VDI Berichte 1185
,
Verein Deutscher Ingenieure
,
Düsseldorf, Germany
, pp.
51
61
.
6.
Baralon
,
S.
,
Erikson
,
L. E.
, and
Hall
,
U.
,
1998
, “
Validation of a Throughflow Time-Marching Finite-Volume Solver for Transonic Compressors
,” ASME Paper No. 98-GT-47.
7.
Damle
,
S. V.
,
Dang
,
T. Q.
, and
Reddy
,
D. L.
,
1997
, “
Throughflow Method Applicable for All Flow Regimes
,”
ASME J. Turbomach.
,
119
(
2
), pp.
256
262
.10.1115/1.2841108
8.
Sturmayr
,
A.
, and
Hirsch
,
C.
,
1999
, “
Throughflow Model for Design and Analysis Integrated in a Three-Dimensional Navier–Stokes Solver
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
213
(
4
), pp.
263
273
.10.1243/0957650991537608
9.
Simon
,
J. F.
, and
Léonard
,
O.
,
2005
, “
A Throughflow Analysis Tool Based on the Navier–Stokes Equations
,”
Proceedings of ETC 6th European Conference on Turbomachinery
,
Lille, France
, March 7–11.
10.
Croce
,
G.
,
Gazano
,
R.
,
Satta
,
A.
, and
Ratto
,
L.
,
2009
, “
Axisymmetric Navier–Stokes Solution for Turbomachinery Computations
,” XIX ISABE Conference, Montreal, Canada, September 7–11, ISABE Paper No. 2009-1227.
11.
Rosa Taddei
,
S.
, and
Larocca
,
F.
,
2013
, “
CFD-Based Analysis of Multistage Throughflow Surfaces With Incidence
,”
Mech. Res. Commun.
,
47
, pp.
6
10
.10.1016/j.mechrescom.2012.10.005
12.
Simon
,
J. F.
, and
Léonard
,
O.
,
2007
, “
Modeling of 3-D Losses and Deviations in a Throughflow Analysis Tool
,”
J. Therm. Sci.
,
16
(
3
), pp.
208
214
.10.1007/s11630-007-0208-x
13.
Horlock
,
J. H.
,
1978
,
Actuator Disk Theory: Discontinuities in Thermo-Fluid Dynamics
,
McGraw-Hill
,
New York
.
14.
Pandolfi
,
M.
, and
Colasurdo
,
G.
,
1978
, “
Numerical Investigations on the Generation and Development of Rotating Stalls
,” ASME Paper No. 78-WA/GT-5.
15.
Joo
,
W. G.
,
Hynes
,
T. P.
, and
Reddy
,
D. L.
,
1997
, “
The Application of Actuator Disks to Calculations of the Flow in Turbofan Installations
,”
ASME J. Turbomach.
,
119
(
4
), pp.
723
732
.10.1115/1.2841182
16.
Schmidtmann
,
O.
, and
Anders
,
J. M.
,
2001
, “
Route to Surge for a Throttled Compressor—A Numerical Study
,”
J. Fluids Struct.
,
15
, pp.
1105
1121
.10.1006/jfls.2000.0371
17.
Marsilio
,
R.
, and
Ferlauto
,
M.
,
2009
, “
Numerical Simulation of Transient Operations in Aeroengines
,”
Proceedings of ETC 8th European Conference on Turbomachinery
, Graz, Austria, March 23–27.
18.
Nigmatullin
,
R. Z.
, and
Ivanov
,
M. J.
,
1994
, “
The Mathematical Models of Flow Passage for Gas Turbine and Their Components
,” Paper No. AGARD-LS-198.
19.
Zannetti
,
L.
, and
Pandolfi
,
M.
,
1984
, “
Inverse Design Technique for Cascades
,” NASA Report No. CR-3836.
20.
Pandolfi
,
M.
,
1984
, “
A Contribution to the Numerical Prediction of Unsteady Flows
,”
AIAA J.
,
22
(
5
), pp.
602
610
.10.2514/3.48491
21.
Harten
,
A.
,
Engquist
,
B.
,
Osher
,
S.
, and
Chakravarthy
,
S. R.
,
1987
, “
Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III
,”
J. Comput. Phys.
,
71
(
2
), pp.
231
303
.10.1016/0021-9991(87)90031-3
22.
Rosa Taddei
,
S.
,
Larocca
,
F.
, and
Bertini
,
F.
,
2011
, “
Inverse Method for Axisymmetric Navier–Stokes Computations in Turbomachinery Aerodesign
,”
Proceedings of ETC 9th European Conference on Turbomachinery
,
Istanbul, Turkey
, March 21–25.
23.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. 78-257.10.2514/6.1978-257
24.
Rosa Taddei
,
S.
, and
Larocca
,
F.
,
2008
, “
Axisymmetric Design of Axial Turbomachines: An Inverse Method Introducing Profile Losses
,”
Proc. Inst. Mech. Eng., Part A, J. Power Energy
,
222
(
6
), pp.
613
621
.10.1243/09576509JPE644
25.
Rosa Taddei
,
S.
, and
Larocca
,
F.
,
2012
, “
Potential of Specification of Swirl in Axisymmetric CFD Methods for Turbine Blade Aerodesign
,”
Inverse Probl. Sci. Eng.
,
20
(
4
), pp.
533
551
.10.1080/17415977.2011.639450
26.
Rosa Taddei
,
S.
, and
Larocca
,
F.
,
2010
, “
On the Aerodynamic Design of Axial Flow Turbines by an Implicit Upwind Axisymmetric Solver
,”
Inverse Probl. Sci. Eng.
,
18
(
5
), pp.
635
654
.10.1080/17415971003686735
27.
Weinig
,
F. S.
,
1964
, “
Theory of Two Dimensional Flow Through Cascades
,”
Aerodynamics of Turbines and Compressors
,
Princeton University Press
,
Princeton, NJ
.
28.
Came
,
P.
,
1995
, “
Streamline Curvature Throughflow Analysis of Axial-Flow Turbines
,”
Turbomachinery—Fluid Dynamic and Thermodynamic Aspects
, (VDI Berichte 1185),
Verein Deutscher Ingenieure
,
Düsseldorf, Germany
, pp.
291
307
.
29.
Islam
,
A. M. T.
, and
Sjolander
,
S. J.
,
1999
, “
Deviation in Axial Turbines at Subsonic Conditions
,” ASME Paper No. 99-GT-26.
30.
Massardo
,
A.
, and
Satta
,
A.
,
1985
, “
A Correlation for the Secondary Deviation Angle
,” ASME Paper No. 85-IGT-36.
You do not currently have access to this content.