An experimental study was performed to measure the detailed heat transfer distributions, Fanning friction factors (f), and thermal performance factors (TPF) of a radially rotating twin-pass parallelogram channel. Laboratory scale full field Nusselt number (Nu) distributions over leading endwall (Leading-E), and trailing endwall (Trailing-E) of the rotating channel are measured at the test conditions of 5000 < Re < 20,000, 0 < Ro < 0.3 and 0.028 < Δρ/ρ < 0.12. A selection of Nu data illustrates the individual and interactive impacts of Re, Ro, and buoyancy (Bu) numbers on local and area-averaged heat transfer properties. Without the additional flow complexities induced by the turbulators, the degrees of Bu impacts are significantly amplified from those developed in an enhanced rotating ribbed channel. Relative to the similar rotating square twin-pass channel, the heat transfer recovery over the stable wall proceeds at the lower Ro for present rotating parallelogram channel. Accompanying with the improved heat transfer performances from the square-channel counterparts, the f values are raised. With a set of f correlations generated using the f data collected from the Leading-S and Trailing-S at isothermal conditions; the TPF values at various rotating conditions were evaluated. The heat transfer correlations that determine the area-averaged Nusselt numbers over the inlet and outlet legs and over the turning region are generated. The area-averaged Nu, f factors, and TPF determined from the present rotating parallelogram channel are compared with those reported for the rotating twin-pass channels to determine the comparatively thermal performances of the parallelogram rotating channel for turbine rotor blade cooling.

References

References
1.
Dean
,
W. R.
,
1928
, “
LXXII. The Stream-Line Motion of Fluid in a Curved Pipe
,”
Philos. Mag. J. Sci.
,
5
(30), pp.
673
695
.10.1080/14786440408564513
2.
Chyu
,
M. K.
,
1991
, “
Regional Heat Transfer in Two-Pass and Three-Pass Passages With 180-Deg Sharp Turns
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
63
70
.10.1115/1.2910553
3.
Han
,
J. C.
, and
Zhang
,
P.
,
1991
, “
Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
,
113
(1)
, pp.
123
130
.10.1115/1.2927730
4.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(11)
, pp.
2525
2537
.10.1016/S0017-9310(96)00318-3
5.
Hibbs
,
R.
,
Acharya
,
S.
,
Chen
,
Y.
,
Nikitopoulos
,
D.
, and
Myrum
,
T.
,
1998
, “
Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel With Cylindrical Vortex Generators
,”
ASME J. Turbomach.
,
120
(
4
), pp.
724
734
.10.1115/1.2841757
6.
Ekkad
,
S. V.
,
Pamula
,
G.
, and
Shantiniketanam
,
M.
,
2000
, “
Detailed Heat Transfer Measurements Inside Straight and Tapered Two-Pass Channels With Rib Turbulators
,”
Exp. Therm. Fluid Sci.
,
22
(3–4)
, pp.
155
163
.10.1016/S0894-1777(00)00022-4
7.
Cai
,
L.
,
Ota
,
H.
,
Hirota
,
M.
,
Nakayama
,
H.
, and
Fujita
,
H.
,
2004
, “
Influence of Channel Aspect Ratio on Heat Transfer Characteristics in Sharp-Turn Connected Two-Pass Channels With Inclined Divider Wall
,”
Exp. Therm. Fluid Sci.
,
28
(6)
, pp.
513
523
.10.1016/j.expthermflusci.2003.07.003
8.
Jenkins
,
S. C.
,
Zehnder
,
F.
,
Shevchuk
,
I. V.
,
Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Schnieder
,
M.
,
2012
, “
The Effects of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel
,”
ASME J. Turbomach.
,
135
(
2
), p.
021001
.10.1115/1.4006584
9.
Morris
,
W. D.
, and
Rahmat-Abadi
,
K. F.
,
1996
, “
Convective Heat Transfer in Rotating Ribbed Tubes
,”
Int. J. Heat Mass Transfer
,
39
(11)
, pp.
2253
2266
.10.1016/0017-9310(95)00333-9
10.
Morris
,
W. D.
, and
Chang
,
S. W.
,
1997
, “
An Experimental Study of Heat Transfer in a Simulated Turbine Blade Cooling Passage
,”
Int. J. Heat Mass Transfer
,
40
(15)
, pp.
3703
3716
.10.1016/S0017-9310(96)00311-0
11.
Dutta
,
S.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1996
, “
Local Heat Transfer in a Rotating Two-Pass Ribbed Triangular Duct With Two Model Orientations
,”
Int. J. Heat Mass Transfer
,
39
(4)
, pp.
707
715
.10.1016/0017-9310(95)00171-9
12.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trip Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(1)
, pp.
113
123
.10.1115/1.2928265
13.
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Effect of Rotation on Heat Transfer in Two-Pass Square Channels With Five Different Orientations of 45° Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
46
(4)
, pp.
653
669
.10.1016/S0017-9310(02)00325-3
14.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Po
,
Y.
,
2010
, “
Coriolis and Rotating Buoyancy Effect on Detailed Heat Transfer Distributions in a Two-Pass Square Channel Roughened by 45° Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
53
(7–8)
, pp.
1349
1363
.10.1016/j.ijheatmasstransfer.2009.12.024
15.
Griffith
,
T. S.
,
AI-Hadhrami
,
L.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
ASME J. Turbomach.
,
125
(
3
), pp.
555
563
.10.1115/1.1571850
16.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Chen
,
W. C.
,
2012
, “
Influence of Radial Rotation on Heat Transfer in a Rectangular Channel With Two Opposite Walls Roughened by Hemispherical Protrusions at High Rotation Number
,”
ASME J. Turbomach.
,
134
(1)
, p.
011010
.10.1115/1.4003231
17.
Liou
,
T. M.
,
Chang
,
S. W.
,
Chen
,
J. S.
,
Yang
,
T. L.
, and
Lan
,
Y. A.
,
2009
, “
Influence of Channel Aspect Ratio on Heat Transfer in Rotating Rectangular Ducts With Skewed Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(23–24)
, pp.
5309
5322
.10.1016/j.ijheatmasstransfer.2009.07.013
18.
Chang
,
S. W.
,
Yang
,
T. L.
,
Liou
,
T. M.
, and
Hong
,
G. F.
,
2009
, “
Heat Transfer of Rotating Rectangular Duct With Compound Scaled Roughness and V-Ribs at High Rotation Numbers
,”
Int. J. Therm. Sci.
,
48
(1)
, pp.
174
187
.10.1016/j.ijthermalsci.2008.03.001
19.
Chang
,
S. W.
,
Liou
,
T. M.
,
Yang
,
T. L.
, and
Hong
,
G. F.
,
2010
, “
Heat Transfer in Radially Rotating Pin-Fin Channel at High Rotation Numbers
,”
ASME J. Turbomach.
,
132
(
2
), p.
021019
.10.1115/1.3147103
20.
Chang
,
S. W.
,
Liou
,
T. M.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
,
2008
, “
Heat Transfer in High-Speed Rotating Trapezoidal Duct With Rib-Roughened Surfaces and Air Bleeds From the Wall on Apical Side
,”
ASME J. Heat Transfer
,
130
(6)
, p.
061702
.10.1115/1.2891217
21.
Chang
,
S. W.
,
Yang
,
T. L.
,
Liou
,
T. M.
, and
Hong
,
G. F.
,
2009
, “
Heat Transfer in Rotating Scale-Roughened Trapezoidal Duct at High Rotation Numbers
,”
J. Appl. Therm. Eng.
,
29
(8–9)
, pp.
1682
1693
.10.1016/j.applthermaleng.2008.07.024
22.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Lee
,
T.-H.
,
2012
, “
Thermal Performance Comparison Between Radially Rotating Ribbed Parallelogram Channels With and Without Dimples
,”
Int. J. Heat Mass Transfer
,
55
(13–14)
, pp.
3541
3559
.10.1016/j.ijheatmasstransfer.2012.02.058
23.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Lee
,
T.-H.
,
2012
, “
Thermal Performance of Developing Flow in a Radially Rotating Parallelogram Channel With 45° Ribs
,”
Int. J. Therm. Sci.
,
52
(2–3), pp.
186
204
.10.1016/j.ijthermalsci.2011.09.013
24.
Chang
,
S. W.
, and
Morris
,
W. D.
,
1998
, “
A Comparative Study of Heat Transfer Between Rotating Circular Smooth-Walled and Square Rib-Roughened Ducts With Cooling Application for Gas Turbine Rotor Blades
,”
JSME Int. J., Ser. B
,
41
(2)
, pp.
302
315
.10.1299/jsmeb.41.302
25.
Kim
,
J. H.
,
Simon
,
T. W.
, and
Viskanta
,
R.
,
1993
, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
5
6
.10.1115/1.2910670
26.
Liou
,
T. M.
,
Chang
,
S. W.
,
Chan
,
S. P.
,
Liou
,
Y. S.
, and
Chu
,
K. C.
,
2013
, “
Flow Visualization and PIV Measurements in a Two-Pass Smooth-Wall Parallelogram Channel
,”
9th Pacific Symposium on Flow Visualization and Image Processing
(PSFVIP-9), Busan, Korea, August 25–28, pp.
210
224
.
27.
Kukreja
,
R. T.
,
Park
,
C. W.
, and
Lau
,
S. C.
,
1998
, “
Heat (Mass) Transfer in a Rotating Two Pass Square Channel—Part II: Local Transfer Coefficient, Smooth Channel
,”
Int. J. Rotating Mach.
,
4
(1)
, pp.
1
15
.10.1155/S1023621X98000013
28.
Fu
,
W. L.
,
2005
, “
Aspect Ratio Effect on Heat Transfer in Rotating Two-Pass Rectangular Channels With Smooth Walls and Ribbed Walls
,” Doctoral dissertation, Department of Mechanical Engineering, Texas A&M University, College Station, TX.
29.
Deng
,
H.
,
Qiu
,
L.
,
Tao
,
Z.
, and
Tian
,
S.
,
2013
, “
Heat Transfer Study in Rotating Smooth Square U-Duct at High Rotation
,”
Int. J. Heat Mass Transfer
,
66
(23–24), pp.
733
744
.10.1016/j.ijheatmasstransfer.2013.07.080
30.
Agarwal
,
P.
,
2004
, “
Heat/Mass Transfer in Smooth and Ribbed Rectangular Serpentine Passages of Different Aspect Ratios and Orientation
,” Master dissertation, Louisiana State University, Baton Rouge, LA.
You do not currently have access to this content.