Conjugate heat transfer (CHT) computational fluid dynamic (CFD) predictions were carried out for a 10 × 10 square array of impingement holes, for a range of pitch to diameter ratio X/D from 1.9 to 11.0 at a constant impingement gap Z of 10 mm and pitch X of 15.24 mm. The variation of X/D changes the impingement wall pressure loss for the same coolant mass flow rate and also changes the interaction with the impingement gap cross-flow. The experimental technique to determine the surface averaged heat transfer used the lumped capacity method with Nimonic-75 metal walls with imbedded thermocouples and a step change in the hot wall cooling to determine the heat transfer coefficient h from the transient cooling of the metal wall. The test wall was electrically heated to about 80  °C and then transiently cooled by the impingement flow and the lumped capacitance method was used to measure the locally surface average heat transfer coefficient. The predictions and measurements were carried out at an impingement jet mass flux of 1.93 kg/s m2 bar, which is a typical coolant flow rate for regenerative impingement cooling of low NOx gas turbine combustor walls. The computations were conducted for a fixed hot side temperature of 353 K that was imposed at the hot face of the target wall. The wall temperatures as a function of distance along the gap were computed together with the impingement gap aerodynamics. Surface average heat transfer coefficient h and pressure loss predictions were in good agreement with the experimental measurements. However, there was less good agreement for the axial variation of the local surface averaged h for lower values of X/D. The surface averaged heat transfer to the impingement jet wall was also computed and shown to be roughly 70% of target wall impingement heat transfer.

References

References
1.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1984
, “
Impingement Cooling of Gas Turbine Components,
,”
High Temp. Technol.
,
2
(
2
), pp.
99
106
.0261-9180/84/020099-08
2.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Efects of Minimum, Intermediate and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.10.1115/1.3248197
3.
Facchini
,
B.
, and
Surace
,
M.
,
2006
, “
Impingement Cooling for Modern Combustors, Experimental Analysis of Heat Transfer and Effectiveness
,”
J. Exp. Fluids
,
40
(
4
), pp.
601
611
.10.1007/s00348-005-0100-y
4.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of Impingement Jet Array Flat Wall Cooling Aerodynamics With Single Sided Flow Exit
,”
ASME
Paper No. GT2013-95343.10.1115/GT2013-95343
5.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of the Influence of the Impingement Gap on the Effect of Crossflow
,”
ASME
Paper No. HT2013-17180.10.1115/HT2013-17180
6.
Ito
,
E.
,
Okada
,
I.
,
Tsukagoshi
,
K.
,
Muyama
,
A.
, and
Masada
,
J.
,
2009
, “
Development of Key Technologies for the Next Generation 1700C-Class Gas Turbine
,”
ASME
Paper No. GT2009-59783.10.1115/GT2009-59783
7.
Abdul Husain
,
R. A. A.
, and
Andrews
,
G. E.
,
1990
, “
Full Coverage Impingement Heat Transfer at High Temperature
,”
ASME
Paper No. 90-GT-285.
8.
El-Jummah
,
A. M.
,
Abdul Hussain
,
R. A. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of the Surface Averaged Impingement Heat Transfer Coefficients for Impingement Cooling With Backside Cross-Flow
,”
ASME
Paper No. IMECE2013-63580.10.1115/IMECE2013-63580
9.
Abdul Husain
,
R. A. A.
,
Andrews
,
G. E.
,
Asere
,
A. A.
, and
Ndiema
,
C. K. W.
,
1988
, “
Full Coverage Impingement Heat Transfer, Cooling Effectiveness
,”
ASME
Paper No. 88-GT-270.
10.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1986
, “
Full Coverage Impingement Heat Transfer, Influence of Channel Height
,”
8th International Heat Transfer, San Francisco, CA, August 17–22
, pp.
1205
1211
.
11.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1987
, “
Full Coverage Impingement Heat Transfer, The Influence of Crossflow
,”
AIAA
Paper No. 87-2010.10.2514/6.87-2010
12.
El-Jummah
,
A. M.
,
Abdul Hussain
,
R. A. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2014
, “
Conjugate Heat Transfer CFD Predictions of Impingement Heat Transfer, Influence of Number of Holes for a Constant Pitch-to-Diameter Ratio X/D
,”
ASME
Paper No. GT2014-25268.10.1115/GT2014-25268
13.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Hussain
,
C. I.
, and
Mkpadi
,
M. C.
,
1985
, “
Full Coverage Impingement Heat Transfer, The Variation in Pitch to Diameter Ratio at a Constant Gap
,”
Proportion and Energetics Panel of AGARD, 65th Symposium Heat Transfer and Cooling in Gas Turbines (AGARD CP-390), AGARD, Neuilly-sur-Seine, France, Paper
No. 26.
14.
Andrews
,
G. E.
, and
Hussain
,
C. I.
,
1984
, “
Full Coverage Impingement Heat Transfer, The Influence of Impingement Jet Size
,”
1st UK National Heat Transfer Conference, Leeds, UK, July 3–5, IChemE Symposium Series
, No. 86, pp.
1115
1124
.
15.
Chance
,
J. L.
,
1974
, “
Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets
,”
Tappi
,
57
(
6
), pp.
108
112
.
16.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including Effects of Spent Air
,”
ASME J. Eng. Power
,
63
(
4
), pp.
73
82
.10.1115/1.3445306
17.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Power
,
71
(
1
), pp.
35
41
.10.1115/1.3445616
18.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Cross-Flow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
19.
Hale
,
A. C.
,
Plesniak
,
W. M.
, and
Ramadhyani
,
S.
,
2000
, “
Structural Features and Surface Heat Transfer Associated With a Row of Short-Hole Jets in Cross-Flow
,”
Int. J. Heat Fluid Flow
,
21
(
5
), pp.
542
553
.10.1016/S0142-727X(00)00043-6
20.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2003
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
994
1002
.10.1115/1.1615256
21.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggared Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p. 092201.10.1115/1.4001633
22.
Nuutinen
,
M.
,
Kaario
,
O.
, and
Larmi
,
M.
,
2009
, “
Advances in Variable Density Wall Functions for Turbulent Flow CFD-Simulations, Emphasis on Heat Transfer
,”
SAE
Paper No. 2009-01-1975.10.4271/2009-01-1975
23.
Taslim
,
M. E.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), p. 011021.10.1115/1.2950058
24.
ASME
, 2009, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,” American Society of Mechanical Engineers, New York, Standard No. VV 20-2009.
25.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473.10.1115/GT2002-30473
26.
Zhang
,
C.
,
Wang
,
Z.
,
Liu
,
J.
, and
An
,
B.
,
2013
, “
The Effects Biot Number on the Conjugate Film Cooling Effectiveness Under Different Blowing Ratios
,”
ASME
Paper No. GT2013-94041.10.1115/GT2013-94041
27.
Johnson
,
J. J.
,
King
,
P. I.
,
Ni
,
R. H.
,
Humber
,
W.
, and
Clark
,
J. P.
,
2013
, “
Conjugate CFD Simulations of an Optimized Turbine Vane Film Cooling Array on Flat Plate Models
,”
ASME
Paper No. GT2013-94383.10.1115/GT2013-94383
28.
Lad
,
B.
, and
He
,
L.
,
2013
, “
An Immersed Mesh Block (IMB) Approach for Conjugate Heat Transfer Predictions
,”
ASME
Paper No. GT2013-94053.10.1115/GT2013-94053
29.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2012
, “
Conjugate Heat Transfer From Flat Plate With Combined Impingement and Film Cooling
,”
ASME
Paper No. GT2012-68830.10.1115/2012GT-68830
30.
Sidwell
,
T. G.
,
Lawson
,
S. A.
,
Straub
,
D. L.
,
Casleton
,
K. H.
, and
Beer
,
S.
,
2013
, “
Conjugate Heat Transfer Modelling of a Film-Cooled, Flat-Plate Test Specimen in a Gas Turbine Aero Thermal Test Facility
,”
ASME
Paper No. GT2013-94687.10.1115/GT2013-94687
31.
Lawson
,
S. A.
,
Straub
,
D. L.
,
Beer
,
S.
,
Casleton
,
K. H.
, and
Sidwell
,
T. G.
,
2013
, “
Direct Measurement of Overall Effectiveness and Heat Flux on a Film Cooled Test Article at High Temperatures and Pressures
,”
ASME
Paper No. GT2013-94685.10.1115/GT2013-94685
32.
Hao
,
Z.
,
Ren
,
X.
,
Song
,
Y.
, and
Gu
,
C.
,
2013
, “
An Investigation of Conjugate Heat Transfer Simulations Based on Discontinuous Galerkin Methods on Unstructured Grids
,”
ASME
Paper No. GT2013-94498.10.1115/GT2013-94498
33.
Ni
,
R.
,
Clark
,
J. P.
,
Humber
,
W.
,
Anthony
,
R. J.
,
Fan
,
G.
, and
Johnson
,
J. J.
,
2013
, “
Comparison of Predictions From Conjugate Heat Transfer Analysis of a Film-Cooled Turbine Vane to Experimental Data
,”
ASME
Paper No. GT2013-94716.10.1115/GT2013-94716
34.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2011
, “
Predictions of Effusion Cooling With Conjugate Heat Transfer
,”
ASME
Paper No. GT2011-45517. 10.1115/GT2011-45517
35.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Ingham
,
D. B.
,
Burns
,
A. D.
, and
Pourkashanian
,
M.
,
2012
, “
Conjugate Heat Transfer Predictions of Effusion Cooling: The Influence of the Coolant Jet Flow Direction on the Cooling Effectiveness
,”
ASME
Paper No. GT2012-68517. 10.1115/GT2012-68517
36.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Ingham
,
D. B.
,
Burns
,
A. D.
, and
Pourkashanian
,
M.
,
2012
, “
Conjugate Heat Transfer Predictions of Effusion Cooling: The Influence of the Injection Hole Size on Cooling Performance
,”
ASME
Paper No. GT2012-68516.10.1115/GT2012-68516
You do not currently have access to this content.