In gas turbines, rim seals are fitted at the periphery of the wheel-space between the turbine disk and its adjacent casing; their purpose is to reduce the ingress of hot mainstream gases. A superposed sealant flow, bled from the compressor, is used to purge the wheel-space or at least dilute the ingress to an acceptable level. The ingress is caused by the circumferential variation of pressure in the turbine annulus radially outward of the seal. Engine designers often use double-rim seals where the variation in pressure is attenuated in the outer wheel-space between the two seals. This paper describes experimental results from a research facility that models an axial turbine stage with engine-representative rim seals. The radial variation of CO2 gas concentration, swirl, and pressure, in both the inner and outer wheel-space, are presented over a range of purge flow rates. The data are used to assess the performance of two seals: a datum double-rim seal and a derivative with a series of radial fins. The concept behind the finned seal is that the radial fins increase the swirl in the outer wheel-space; measurements of swirl show the captive fluid between the fins rotate with near solid body rotation. The improved attenuation of the pressure asymmetry, which governs the ingress, results in an improved performance of the inner geometry of the seal. The fins also increased the pressure in the outer wheel-space and reduced the ingress though the outer geometry of the seal.

References

References
1.
Wang
,
C. Z.
,
Johnson
,
B. V.
,
Mathiyalagan
,
S. P.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2012
, “
Rim Seal Ingestion in a Turbine Stage From 360-Degree Time-Dependent Numerical Simulations
,”
ASME
Paper No. GT2012-68193.10.1115/GT2012-68193
2.
Palafox
,
P.
,
Ding
,
Z.
,
Bailey
,
J.
,
Vanduser
,
T.
,
Kirtley
,
K.
,
Moore
,
K.
, and
Chupp
,
R.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part I: Experimental Test Vehicle, Measurement Capability and Baseline Results
,”
ASME
Paper No. GT2013-96020.10.1115/GT2013-96020
3.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
,
Lock
, and
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 1: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.10.1115/1.4006609
4.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 2: Rotationally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.10.1115/1.4006586
5.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 3: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.10.1115/1.4007504
6.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution In and Inside the Rim of the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2003-38459.10.1115/GT2003-38459
7.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
deVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829.10.1115/GT2004-53829
8.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.10.1115/1.1456461
9.
Hills
,
N. J.
,
Green
,
T.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1997
, “
Aerodynamics of Turbine Rim-Seal Ingestion
,” ASME Paper No. 97-GT-268.97-GT-268
10.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2002
, “
Measurement and Analysis of Ingestion Through a Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
11.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.-Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.10.1115/1.4002423
12.
Balasubramanian
,
J.
,
Junnarkar
,
N.
,
Zhou
,
D. W.
,
Roy
,
R. P.
,
Kim
,
Y. W.
, and
Moon
,
H. K.
,
2011
, “
Experiments on Aft-Disk Cavity Ingestion in a Model 1.5-Stage Axial-Flow Turbine
,”
ASME
Paper No. GT2011-45895.10.1115/GT2011-45895
13.
Ding
,
Z.
,
Palafox
,
P.
,
Moore
,
K.
,
Chupp
,
R.
, and
Kirtley
,
K. R.
, “
A New 1-1/2 Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part II: CFD Modeling and Validation
,”
ASME
Paper No. GT2013-96021.10.1115/GT2013-96021
14.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
15.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
16.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 5: Fluid Dynamics of Wheel-Space
,”
ASME
Paper No. GT2013-94148.10.1115/GT2013-94148
17.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems, Volume 1—Rotor Stator Systems
,
Research Studies Press Ltd.
,
Taunton, UK
.
18.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Teuber
,
R.
,
Pountney
,
O. J.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 4: Off-Design Conditions
,”
ASME
Paper No. GT2013-94147.GT2013-94147
19.
Chew
,
J. W.
,
Farthing
,
P. R.
,
Owen
,
J. M.
, and
Stratford
,
B.
,
1988
, “
The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow
,” ASME Paper No. 88-GT-58.10.1115/88-GT-58
20.
Owen
,
J. M.
,
Lock
,
G. D.
,
Sangan
,
C. M.
,
Tham
,
K. M.
,
Laurello
,
V. P.
, and
Lee
,
C. P.
,
2011
, “
Finned Seal Assembly for Gas Turbine Engines
,” U.S. PTO patent application 2012P08852US.
21.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.10.1115/1.4006601
22.
Popovic
,
I.
, and
Hodson
,
H. P.
,
2012
, “
The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in HP Turbines
,”
ASME
Paper No. GT2012-68025.GT2012-68025
23.
Teuber
,
R.
,
Wilson
,
M.
,
Lock
,
G. D.
,
Owen
,
J. M.
,
Li
,
S.
, and
Maltson
,
J. D.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
227
(
2
), pp.
167
178
.10.1177/0957650912466657
You do not currently have access to this content.