Nowadays, the lack of confidence in the prediction of combustor-turbine interactions and more specifically our ability to predict the migration of hot spots through this interface leads to the application of extra safety margins, which are detrimental to an optimized turbine design and efficiency. To understand the physics and flow at this interface, a full 360 deg nonreactive combustor simulator (CS) representative of a recent lean burn chamber together with a 1.5 turbine stage is instrumented at DLR in Gottingen (Germany) within the European project FACTOR. The chamber operates with axial swirlers especially designed to reproduce engine-realistic velocity and temperature distortion profiles, allowing the investigation of the hot streaks transport through the high pressure (HP) stage. First, a true scale three injector annular sector of the CS without turbine is assembled and tested at the University of Florence. To generate the hot steaks, the swirlers are fed by an air flow at 531 K, while the liners are cooled by an effusion system fed with air at ambient temperature. In addition to static pressure taps and thermocouples, the test rig will be equipped with an automatic traverse system which allows detailed measurements at the combustor exit by means of a 5-hole probe, a thermocouple, and hot wire anemometers. This paper presents the design process and instrumentation of the trisector CS, with a special focus on large Eddy simulations (LES) which were widely used to validate the design choices. It was indeed decided to take advantage of the ability and maturity of LES to properly capture turbulence and mixing within combustion chambers, despite an increased computational cost as compared to usual Reynolds averaged Navier Stokes (RANS) approaches. For preliminary design, simulations of a single periodic sector (representative of the DLR full annular rig) are compared to simulations of the trisector test rig, showing no difference on the central swirler predictions, comforting the choice for the trisector. In parallel, to allow hot wire anemometry (HWA) measurements, the selection of an isothermal operating point, representative of the nominal point, is assessed and validated by use of LES.

References

1.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.10.1115/1.2370748
2.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
, I
.
, and
Povey
,
T.
,
2011
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
.10.1115/1.4003233
3.
Butler
,
T.
,
Sharma
,
O.
,
Joslyn
,
H.
, and
Dring
,
R.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.10.2514/3.23116
4.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
,”
ASME J. Turbomach.
,
115
(
4
), pp.
657
666
.10.1115/1.2929300
5.
Shang
,
T.
,
1995
, “
Influence of Inlet Temperature Distortion on Turbine Heat Transfer
,” Ph.D. thesis, Department of Aeronautics and Astronautics Massachusetts Institute of Technology, Cambridge, MA.
6.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), pp.
1
15
.10.115/1.2987240
7.
Dorney
,
D. J.
,
Gundy-Burlet
,
K. L.
, and
Sondak
,
D. L.
,
1999
, “
A Survey of Hot Streak Experiments and Simulations
,”
Int. J. Turbo Jet Engines
,
16
(
1
), pp.
1
15
.10.1515/TJJ.1999.16.1.1
8.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Hogg
,
S. I.
,
Anderson
,
S. J.
, and
Smith
,
G. C.
,
1994
, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,”
ASME
Paper No. 94- GT-277.
9.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2007
, “
Experimental Evaluation of an Inlet Profile Generator for High-Pressure Turbine Tests
,”
ASME J. Turbomach.
,
129
(
2
), pp.
382
394
.10.1115/1.2436897
10.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
,
134
(
1
), p.
011006
.10.1115/1.4002994
11.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Moffitt
,
T. P.
,
1984
, “
Performance of a High-Work Low Aspect Ration Turbine Tested With a Realistic Inlet Radial Temperature Profile
,” AIAA/SAE/ASME 20th Joint Propulsion Conference Cincinnati, OH, June 11-13,
AIAA
Technical Paper No. 84-1161. 10.2514/6.1984-1161
12.
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1988
, “
A Trace Gas Technique to Study Mixing in a Turbine Stage
,”
ASME J. Turbomach.
,
110
(
1
), pp.
38
43
.10.1115/1.3262165
13.
Shang
,
T.
,
Guenette
,
G.
,
Epstein
,
A.
, and
Saxer
,
A.
,
1995
, “
The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine
,” 31st AIAAASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, July 10–12,
AIAA
Paper No. 95-3042. 10.2514/6.1995-3042
14.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
15.
Beér
,
J.
, and
Chigier
,
N.
,
1972
,
Combustion Aerodynamics
,
Wiley
,
New York
.
16.
Poinsot
,
T.
, and
Veynante
,
D.
,
2011
,
Theoretical and Numerical Combustion
, 3rd ed., T. Poinsot & D. Veynante, Toulouse, France.
17.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Scientific Computation
),
Springer
, Berlin.
18.
Schoenfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flows Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
.10.2514/3.14333
19.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor–Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
20.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: 1. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
21.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate
,”
AIAA J.
,
46
(
10
), pp.
2623
2633
.10.2514/1.37008
22.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
23.
Yoo
,
C. S.
, and
Im
,
H. G.
,
2007
, “
Characteristic Boundary Conditions for Simulations of Compressible Reacting Flows With Multi-Dimensional, Viscous and Reaction Effects
,”
Combust. Theor. Model.
,
11
(
2
), pp.
259
286
.10.1080/13647830600898995
24.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
107
(
2
), pp.
161
164
.10.1115/1.3242450
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME J. Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.