The complex structures in the flow field of gas turbine film cooling increase the anisotropy of turbulence making it difficult to accurately compute turbulent eddy viscosity and scalar diffusivity. An algebraic anisotropic turbulence model is developed while aiming at a more accurate modeling of the Reynolds stress and turbulent scalar-flux. In this study, the algebraic anisotropic model is validated by two in-house experiments. One is a leading edge with showerhead film cooling and the other is a vane with full coverage film cooling. Adiabatic film cooling effectiveness under different blowing ratios, density ratios, and film cooling arrangements were measured using pressure sensitive paint (PSP) technique. Four different turbulence models are tested and detailed analyses of computational simulations are performed. Among all the turbulence models investigated, the algebraic anisotropic model shows better agreement with the experimental data qualitatively and quantitatively. The algebraic anisotropic model gives a good prediction of the vortex strength and turbulence mixing of the jet, therefore improves the prediction of the scalar field.

References

References
1.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
IGTI Turbo Expo, Orlando, FL, June 2–5, ASME Paper No. 97-GT-45
.
2.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2004
, “
Evolution of Jets Emanating From Short Holes Into Crossflow
,”
J. Fluid Mech.
,
503
, pp.
57
91
.10.1017/S0022112003007407
3.
Jessen
,
W.
,
Schröder
,
W.
, and
Klaas
,
M.
,
2007
, “
Evolution of Jets Effusing From Inclined Holes Into Crossflow
,”
Int. J. Heat Fluid Flow
,
28
(6), pp.
1312
1326
.10.1016/j.ijheatfluidflow.2007.06.010
4.
Jovanovic
,
M. B.
,
de Lange
,
H. C.
, and
van Steenhoven
,
A. A.
,
2006
, “
Influence of Hole Imperfection on Jet Cross Flow Interaction
,”
Int. J. Heat Fluid Flow
,
27
(1), pp.
42
53
.10.1016/j.ijheatfluidflow.2005.06.003
5.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2006
, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
(1), pp.
141
149
.10.1115/1.2098768
6.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Validation of Quasisteady Assumption in Modelling of Unsteady Film-Cooling
,”
ASME J. Turbomach.
,
130
(1), p.
011022
.10.1115/1.2720878
7.
Aga
,
V.
,
Rose
,
M.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Flow Structure Investigation of Compound Angled Film Cooling
,”
ASME J. Turbomach.
,
130
(3), p.
031005
.10.1115/1.2775491
8.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness Using PIV and PSP
,”
ASME J. Turbomach.
,
133
(4), p.
041023
.10.1115/1.4003051
9.
McLachlan
,
B. G.
, and
Bell
,
J. H.
,
1995
, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
470
485
.10.1016/0894-1777(94)00123-P
10.
Zhang
,
L.
, and
Fox
,
M.
,
1999
, “
Flat Plate Film-Cooling Measurements Using PSP Gas Chromatograph Techniques
,”
5th ASME/JSME Joint Thermal Engineering Conference
,
San Diego
,
CA
, March 14–19.
11.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT2005–72363.10.1115/HT2005-72363
12.
Gao
,
Z.
,
2007
, “
Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades
,” Ph. D. thesis,
Texas A&M University
, College Station, TX, p.
167
.
13.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
14.
Perry
,
A. E.
,
Kelso
,
R. M.
, and
Lim
,
T. T.
,
1993
, “
Topological Structure of a Jet in a Cross Flow
,” AGARD Symposium on Computational and Experimental Assessment of Jets in Cross Flow (AGARD-CP-534), Winchester, UK, April 19–22, pp. 12–13.
15.
Hassan
,
J. S.
, and
Yavuzkurt
,
S.
,
2006
, “
Comparison of Four Different Two-Equation Models of Turbulence in Predicting Film Cooling Performance
,”
ASME
Paper No. GT2006-90860.10.1115/GT2006-90860
16.
Bamba
,
T.
,
Yamane
,
T.
, and
Fukuyama
,
Y.
,
2007
, “
Turbulence Model Dependencies on Conjugate Simulation of Flow and Heat Conduction
,”
ASME
Paper No. GT2007-27824.10.1115/GT2007-27824
17.
Bacci
,
A.
, and
Facchini
,
B.
,
2007
, “
Turbulence Modeling for the Numerical Simulation of Film and Effusion Cooling Flows
,”
ASME
Paper No. GT2007-27182.10.1115/GT2007-27182
18.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423.10.1115/GT2008-51423
19.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Aerodynamic Comparison and Validationi of RANS, URANS and SAS Simulations of Flat Plate Film-Cooling
,”
ASME
Paper No. GT2010-22475.10.1115/GT2010-22475
20.
Oguntade
,
H. I.
,
Andrews
,
G. E.
, and
Burns
,
A.
,
2010
, “
CFD Predictions of Single Row Film Cooling With Inclined Holes: Influence of Hole Outlet Geometry
,”
ASME
Paper No. GT2010-22308.10.1115/GT2010-223080
21.
Bianchini
,
C.
,
Facchini
,
B.
, and
Mangani
,
L.
,
2010
, “
Heat Transfer Performances of Fan-Shaped Film Cooling Holes Part Ii - Numerical Analysis
,”
ASME
Paper No. GT2010-22809.10.1115/GT2010-22809
22.
Hoda
,
A.
, and
Acharya
,
S.
,
2000
, “
Predictions of a Film Cooling Jet in Cross-flow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
(3), pp.
558
569
.10.1115/1.1302322
23.
York
,
W. D.
, and
Leylek
,
J. H.
,
1999
, “
Numerical Prediction of Mainstream Pressure Gradient Effects in Film Cooling
,” ASME Paper No. 99-GT-166.
24.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1995
, “
Pressure Gradient Effects on Film Cooling
,”
ASME
Paper No. 95-GT-18.
25.
Kebede
,
W
.,
1982
, “
Numerical Study of the Self-Preserving Three-Dimensional Wall-Jet
,” M.Sc dissertation,
Faculty of Technology, University of Manchester
, Manchester, UK.
26.
Voigt
,
S.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Aerodynamic Comparison and Validation of RANS, URANS and SAS Simulations of Flat Plate Film-Cooling
,”
ASME
Paper No. GT2010–22475.10.1115/GT2010-22475
27.
Hassan
,
J. S.
, and
Yavuzkurt
,
S.
,
2006
, “
Comparison of Four Different Two-Equation Models of Turbulence in Predicting Film Cooling Performance
,”
ASME
Paper No. GT2006–90860
.10.1115/GT2006-90860
28.
Kusterer
,
K.
,
Bohn
,
D.
,
Elyas
,
A.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The NEKOMIMI Cooling Technology: Cooling Holes With Ears for High-Efficient Film Cooling
,”
ASME
Paper No. GT2011-45524.10.1115/GT2011-45524
29.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2009
, “
Effect of Blowing Ratio in the Near Stagnation Region of a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations
,”
ASME
Paper No. GT2009-59325.10.1115/GT2009-59325
30.
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Dees
,
J. E.
,
2011
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up Simulated Gas Turbine Vane: Part 2—Numerical Simulations
,”
ASME
Paper No. GT2011–46616.10.1115/GT2011-46616
31.
Ligrani
,
P. M.
,
Joseph
,
S. L.
,
Ortiz
,
A.
, and
Evans
,
D. L.
,
1988
, “
Heat Transfer in Film-Cooled Turbulent Boundary Layers at Different Blowing Ratios as Affected by Longitudinal Vortices
,”
Exp. Thermal Fluid Sci.
,
1
(4), pp.
347
362
.10.1016/0894-1777(88)90015-5
32.
Durbin
,
P
.,
1993
, “
A Reynolds-Stress Model for Near-Wall Turbulence
,”
J. Fluid Mech.
,
249
, pp.
465
498
.10.1017/S0022112093001259
33.
Jones
,
R.
,
Acharya
,
S.
, and
Harvey
,
A.
,
2005
, “
Improved Turbulence Modeling of Film Cooling Flow and Heat Transfer Over Turbine Blades
,”
Modeling and Simulation of Turbulent Heat Transfer
,
WIT
Press, Ashurst, UK, pp.
113
146
.
34.
Khritov
,
K. M.
,
Lyubimov
,
D. A.
, and
Maslov.
, V
. P.
,
2002
, “
Three-Dimensional Wall Jets: Experiment, Theory and Application
,”
AIAA
Paper No. 2002-0732.10.2514/6.2002-732
35.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
,
1978
, “
The Turbulent Jet in a Cross Stream at Low Injection Rates: A Three-Dimensional Numerical Treatment
,”
Numer. Heat Transfer
,
1
(2), pp.
217
242
.10.1080/10407787808913373
36.
Azzi
,
A.
, and
Lakehal
,
D.
,
2002
, “
Perspectives in Modeling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Turbulence Models
,”
ASME J. Turbomach.
,
124
(3), pp.
472
484
.10.1115/1.1485294
37.
Theodoridis
,
G.
,
Lakehal
,
D.
, and
Rodi
,
W.
,
2001
, “
3D Calculations of the Flow Field Around a Turbine Blade With Film Cooling Injection Near the Leading Edge
,”
Flow, Turbul. Combust.
,
66
(1), pp.
57
83
.10.1023/A:1011437523546
38.
Lakehal
,
D.
,
2002
, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
,
124
(3), pp.
485
498
.10.1115/1.1482408
39.
Rodi
,
W
.,
1991
, “
Experience With Two-Layer Models Combining the k-ε Model With a One-Equation Model Near the Wall
,”
AIAA
Paper No. 91–0216.10.2514/6.1991-216
40.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Algebraic Anisotropic Eddy-Viscosity Modeling Application to the Turbulent Film Cooling Flows
,”
ASME
Paper No. GT2011-45791.10.1115/GT2011-45791
41.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Full Field Algebraic Anisotropic Eddy Viscosity Model for the Film Cooling Flows
,”
ASME
Paper No. GT2012-68667.10.1115/GT2012-68667
42.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2012
, “
Application of the Anisotropic Eddy-Viscosity Model to Film Cooling Flows With Different Geometries
,”
J. Eng. Thermophys.
,
33
(
4
), pp.
578
582
.http://jetp.iet.cn/EN/Y2012/V33/I4/578
43.
Liu
,
C.
,
Zhu
,
H.
, and
Bai
,
J.
,
2008
, “
Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
51
(25), pp.
6208
6218
.10.1016/j.ijheatmasstransfer.2008.04.039
44.
Liu
,
C.
,
Zhu
,
H.
, and
Bai
,
J.
,
2011
, “
New Development of the Turbulent Prandtl Number Models for the Computation of Film Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
54
(4), pp.
874
886
.10.1016/j.ijheatmasstransfer.2010.10.015
45.
Abe
,
K.
, and
Suga
,
K.
,
2001
, “
Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar Flux Model
,”
Int. J. Heat Fluid Flow
,
22
(1), pp.
19
29
.10.1016/S0142-727X(00)00062-X
46.
Li
,
X.
,
Qin
,
Y.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Algebraic Anisotropic Turbulence Modeling of Compound Angled Film Cooling Validated by PIV and PSP Measurements
,”
ASME J. Heat Transfer
,
136
(
3
), p.
032201
.10.1115/1.4025411
47.
Chen
,
H. C.
, and
Patel
, V
. C.
,
1988
, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
(
6
), pp.
641
648
.10.2514/3.9948
48.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
49.
Li
,
J.
,
2011
, “
Experimental and Numerical Research on Gas Turbine Film Cooling
,” Ph.D. thesis,
Tsinghua University
,
Beijing, China
.
You do not currently have access to this content.