In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines, a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the Altitude Test Facility (ATF) aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multistage computational fluid dynamics (CFD) predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positive incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side (SS) phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions, vane 1 passage vortex fluid is involved in the midspan passage interaction, leading to a more distorted three-dimensional (3D) flow field.

References

References
1.
Lipfert
,
M.
,
Marx
,
M.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Mahle
,
I.
,
Freygang
,
U.
, and
Brettschneider
,
M.
,
2013
, “
An LP Turbine at Extreme Off-Design Operation
,”
ASME J. Turbomach.
,
136
(3), p.
031018
.10.1115/1.4025592
2.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.10.1115/1.2927647
3.
Hodson
,
H.
, and
Dominy
,
R.
,
1986
, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
201
209
.10.1115/1.3262086
4.
Broszat
,
D.
, and
Korte
,
D.
,
2011
, “
Validation of an Integrated Acoustic Absorber in a Turbine Exit Guide Vane
,”
AIAA
Paper No. 2011-2915. 10.2514/6.2011-2915
5.
Kachel
,
C. E.
, and
Denton
,
J. D.
,
2006
, “
Experimental and Numerical Investigation of the Unsteady Surface Pressure in a Three-Stage Model of an Axial High Pressure Turbine
,”
ASME J. Turbomach.
,
128
(
2
), pp.
261
272
.10.1115/1.1860378
6.
Kemp
,
N. H.
, and
Sears
,
W. R.
,
1955
, “
The Unsteady Forces Due to Viscous Wakes in Turbomachines
,”
J. Aeronaut. Sci.
,
7
(
22
), pp.
478
483
.10.2514/8.3376
7.
Grollius
,
H.-W.
,
1981
, “
Experimentelle Untersuchung von Rotor-Nachlaufdellen und deren Auswirkungen auf die dynamische Belastung axialer Verdichter- und Turbinengitter
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
8.
Hodson
,
H.
,
1985
, “
Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
ASME J. Eng. Gas Turbine Power
,
107
(
2
), pp.
467
476
.10.1115/1.3239751
9.
Dénos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
, V
.
, and
Martelli
,
F.
,
2001
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
123
(
1
), pp.
81
89
.10.1115/1.1314607
10.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part II: Vane–Vane Interaction and Discussion of Results
,”
ASME J. Turbomach.
,
125
(
1
), pp.
33
47
.10.1115/1.1508386
11.
Stieger
,
R. D.
,
Hollis
,
D.
, and
Hodson
,
H. P.
,
2004
, “
Unsteady Surface Pressures Due to Wake-Induced Transition in a Laminar Separation Bubble on a Low-Pressure Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
544
553
.10.1115/1.1773851
12.
Buffum
,
D.
,
1993
, “
Blade Row Interaction Effects on Flutter and Forced Response
,”
NASA Technical Memorandum
, Vol.
106438
,
National Aeronautics and Space Administration and National Technical Information Service
,
Washington, DC
.
13.
Kazin
,
S.
,
1975
, “
Turbine Noise Generation, Reduction and Prediction
,”
AIAA
Paper No. 75-449. 10.2514/6.75-449
14.
Marx
,
M.
,
Lipfert
,
M.
,
Rose
,
M. G.
,
Staudacher
,
S.
, and
Korte
,
D.
,
2013
, “
Unsteady Work Processes Within a Low Pressure Turbine Vane Passage
,”
ASME
Paper No. GT2013-94234. 10.1115/GT2013-94234
15.
Schinko
,
N.
,
Kürner
,
M.
,
Staudacher
,
S.
,
Rose
,
M. G.
,
Gier
,
J.
,
Raab
,
I.
, and
Lippl
,
F.
,
2009
, “
Das ATRD-Projekt—Ein Beispiel für die Zusammenarbeit von Industrie und Universität zur Förderung der Grundlagenforschung
,” DGLRK 2009, DGLR, Aachen, Germany, Paper No. DLR-2009-1156.
16.
Gier
,
J.
, and
Ardey
,
S.
,
2001
, “
On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine
,”
ASME
Paper No. 2001-GT-0197. 10.1115/2001-GT-0197
17.
Kürner
,
M.
,
Schneider
,
C.
,
Rose
,
M. G.
,
Staudacher
,
S.
, and
Gier
,
J.
,
2010
, “
LP Turbine Reynolds Lapse Phenomena: Time Averaged Area Traverse and Multistage CFD
,”
ASME
Paper No. GT2010-23114. 10.1115/GT2010-23114
18.
Gostelow
,
J.
,
1977
, “
A New Approach to the Experimental Study of Turbomachinery Flow Phenomena
,”
ASME J. Eng. Power
,
99
(
1
), pp.
97
105
.10.1115/1.3446259
19.
JCGM
,
2008
, “Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement,” Joint Committe for Guides in Metrology, Sèvres, France.
20.
Eulitz
,
F.
,
Engel
,
K.
,
Nuernberger
,
D.
,
Schmitt
,
S.
, and
Yamamoto
,
K.
,
1998
, “
On Recent Advances of a Parallel Time-Accurate Navier Stokes Solver for Unsteady Turbomachinery Flow
,”
4th European Computational Fluid Dynamics
Conference (ECOMAS), Athens, Sept. 7–11.
21.
Franke
,
M.
,
Kuegeler
,
E.
, and
Nuernberger
,
D.
,
2005
, “
Das DLR-Verfahren TRACE: Moderne Simulationstechniken für Turbomaschinenströmungen
,” DGLR Congress 2005, Bonn, Paper No. DGLR-2005-211.
22.
König
,
S.
,
2006
, “
Untersuchung des Einflusses überlagerter Stator- und Rotornachl¨aufe auf den Clocking-Effekt an einer 1.5-stufigen axialen Gasturbine
,” Ph.D. thesis, TU Darmstadt, Darmstadt, Germany.
23.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
,
4th ed.
, K. Hanjalic, Y. Nagano, and M. Tummers,
eds., Begell House Inc.
,
West Redding, CT
, pp.
625
632
.
24.
Malan
,
P.
,
Suluksna
,
K.
, and
Juntasaro
,
E.
,
2009
, “
Calibrating the Re–θ Transition Model
,”
ERCOFTAC Bull.
,
80
(
1
), pp.
52
57
.10.2514/6.2009.1142
25.
Weber
,
A.
,
2008
, “
3D Structured Grids for Multistage Axial Turbomachines and Linear Cascades
,” DLR, Braunschweig, Germany, Paper No. DLR IB-325-07-08.
26.
Yang
,
H.
,
Nuernberger
,
D.
,
Nicke
,
E.
, and
Weber
,
A.
,
2003
, “
Numerical Investigation of Casing Treatment Mechanisms With a Conservative Mixed-Cell Approach
,”
ASME Conference Proceedings
, Atlanta, GA, June 16–19,
ASME
Paper No. GT2003-38483. 10.1115/GT2003-38483
27.
Yang
,
H.
,
Nuernberger
,
D.
, and
Weber
,
A.
,
2002
, “
A Conservative Zonal Approach With Applications to Unsteady Turbomachinery Flows
,” DGLR Congress 2005, Stuttgart, Germany, Paper No. DGLR-2002-073.
28.
Kürner
,
M.
,
Reichstein
,
G. A.
,
Schrack
,
D.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
LP Turbine Reynolds Lapse: Secondary Vortices
,”
ASME
Paper No. GT2011-45557. 10.1115/GT2011-45557
29.
Biester
,
M. H.-O.
,
Henke
,
M.
,
Gündogdu
,
Y.
,
Engel
,
K.
, and
Seume
,
J.
,
2012
, “
Unsteady Wake–Blade Interaction: A Correlation Between Surface Pressure Fluctuations and Loss Generation
,”
ASME
Paper No. GT2012-68906. 10.1115/GT2012-69616
30.
Mailach
,
R.
, and
Vogeler
,
K.
,
2004
, “
Rotor–Stator Interactions in a Four-Stage Low-Speed Axial Compressor—Part I: Unsteady Profile Pressures and the Effect of Clocking
,”
ASME J. Turbomach.
,
126
(
4
), pp.
507
518
.10.1115/1.1791641
31.
Durali
,
M.
, and
Kerrebrock
,
J. L.
,
1998
, “
Stator Performance and Unsteady Loading in Transonic Compressor Stages
,”
ASME J. Turbomach.
,
120
(
2
), pp.
224
232
.10.1115/1.2841397
32.
Lefcort
,
M.
,
1965
, “
An Investigation Into Unsteady Blade Forces in Turbomachines
,”
ASME J. Eng. Gas Turbines Power
,
87
(
4
), pp.
345
354
.10.1115/1.3239884
33.
Hodson
,
H. P.
, and
Addison
,
J. S.
,
1989
, “
Wake–Boundary Layer Interactions in an Axial Flow Turbine Rotor at Off-Design Conditions
,”
ASME J. Turbomach.
,
111
(
2
), pp.
181
192
.10.1115/1.3262254
34.
Schneider
,
C. M.
,
Schrack
,
D.
,
Rose
,
M. G.
,
Staudacher
,
S.
,
Guendogdu
,
Y.
, and
Freygang
,
U.
,
2013
, “
On the Unsteady Formation of Secondary Flow Within a Rotating Turbine Blade Passage
,”
ASME J. Turbomach.
,
136
(6), p.
061004
. 10.1115/1.4025582
35.
Horlock
,
J.
,
1979
,
Unsteady Flow in Turbomachines
,
von Karman Institute
,
Sint-Genesius-Rode, Belgium
.
36.
Naumann
,
H.
, and
Yeh
,
H.
,
1973
, “
Lift and Pressure Fluctuations of a Cambered Airfoil Under Periodic Gusts and Applications in Turbomachinery
,”
ASME J. Eng. Power
,
95
(
1
), pp.
1
10
.10.1115/1.3445690
You do not currently have access to this content.