Aerodynamic instabilities such as stall and surge may lead to mechanical failures. They can be avoided by better understanding and accurate prediction of the associated flow phenomena. Numerical simulations of rotating stall do not often match well the experiments as the number of cells and/or their rotational speed are not correctly predicted. The volumes surrounding the compressor have known effects on rotating stall flow patterns; therefore, an increased need for more realistic simulations has emerged. In that context, this paper addresses a comparison of numerical stall simulation in a compressor alone with a numerical stall simulation including the additional compressor rig. This study investigates the influence of the upstream and downstream volumes of the compressor rig on the rotating stall flow patterns and the consequences on surge inception in a high-pressure, high-speed research compressor. The numerical simulations were conducted using an implicit, time-accurate, 3D compressible Reynolds-averaged Navier–Stokes (URANS) solver. First, rotating stall is simulated in both configurations, and then the outlet nozzles are further closed to bring the compressors to surge. The numerical results show that when the compressor rig is accounted for, fewer cells develop in the third stage and their rotational speed is slightly higher. The major difference linked to the presence of the rig lays in the existence of a 1D low frequency oscillation of the static pressure, which affects the entire flow and modifies surge inception. The analysis of the results leads to a calculation of the thermo-acoustic modes in the whole configuration, which shows that this low frequency corresponds to the third thermo-acoustic mode of the complete test-rig.

References

References
1.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
,
2004
, “
Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,”
ASME
Paper No. GT2004-53354. 10.1115/GT2004-53354
2.
Crook
,
A.
,
Greitzer
,
E. M.
,
Tan
,
C.
, and
Adamczyk
,
J.
,
1993
, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
(
3
), pp.
501
512
.10.1115/1.2929280
3.
Hoying
,
D. A.
,
1996
, “
Blade Passage Flow Structure Effects on Axial Compressor Rotating Stall Inception
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
Callot
,
S.
,
2002
, “
Analyse Des Mécanismes Macroscopiques Produits Par Les Interactions Rotor/Stator Dans Les Turbomachines
,” Ph.D. thesis, Ecole Centrale de Lyon, Lyon, Ecully, France.
5.
Escuret
,
J.
,
1993
, “
The Prediction and Active Control of Surge in Multi-Stage Axial Flow Compressors
,” Ph.D. thesis, Cranfield Institute of Technology, Cranfield, UK.
6.
Hamilton
,
D.
, and
Ismael
,
J.
,
2003
, “
Parallel Simulation of Stall Hysteresis in a Two Dimensional Rotor Blade Row
,” XVI International Symposium on Air Breathing Engines (ISABE 2003), Cleveland, OH, August 31–September 5, Paper No. ISABE-2003-1080, available at: http://ir.etp.ac.cn/handle/311046/78287
7.
Schmidtmann
,
O.
, and
Anders
,
J.
,
2001
, “
Route to Surge for a Throttled Compressor—A Numerical Study
,”
J. Fluids Struct.
,
15
(
8
), pp.
1105
1121
.10.1006/jfls.2000.0371
8.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
J. Propul. Power
,
13
(
1
), pp.
31
38
.10.2514/2.5147
9.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.10.1115/1.2836727
10.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2008
, “
Unsteady Flow and Aeroelasticity Behavior of Aeroengine Core Compressors During Rotating Stall and Surge
,”
ASME J. Turbomach.
,
130
(
3
), p.
031017
.10.1115/1.2777188
11.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Michon
,
G. J.
,
2010
, “
Simulation of Rotating Stall in a Whole Stage of an Axial Compressor
,”
Comput. Fluids
,
39
(
9
), pp.
1644
1655
.10.1016/j.compfluid.2010.05.017
12.
Wlassow
,
F.
,
Gourdain
,
N.
, and
Montagnac
,
M.
,
2009
, “
Numerical Simulation of Aerodynamic Instabilities in a Multi-Stage Compressor
,”
Proceedings of the 12th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(ISUAAAT12), London., September 1-4.
13.
Vahdati
,
M.
,
Sayma
,
A.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.10.1115/1.1861912
14.
März
,
J.
,
Hah
,
C.
,
Neise
,
W.
,
Cumpsty
,
N.
,
Maerz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
375
.10.1115/1.1460915
15.
Choi
,
M.
,
Smith
,
N. H.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.10.1115/1.4006641
16.
Day
,
I.
,
1994
, “
Axial Compressor Performance During Surge
,”
J. Propul. Power
,
10
(
3
), pp.
329
336
.10.2514/3.23760
17.
Spakovszky
,
Z. S.
,
2000
, “
Applications of Axial and Radial Compressor Dynamic System Modeling
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Niazi
,
S.
,
2000
, “
Numerical Simulation of Rotating Stall and Surge Alleviation in Axial Compressors
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
19.
Teramoto
,
S
.,
2008
, “
Analysis of the Entire Surge Cycle of a Multi-Stage High-Speed Compressor
,” Center for Turbulence Research, Annual Research Briefs, Stanford University, Stanford, CA, pp.
205
218
.
20.
Ottavy
,
X.
,
Courtiade
,
N.
, and
Gourdain
,
N.
,
2012
, “
Experimental and Computational Methods for Flow Investigation in High-Speed Multistage Compressor
,”
J. Propul. Power
,
28
(
6
), pp.
1141
1155
.10.2514/1.B34412
21.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
.
22.
Cambier
,
L.
, and
Veuillot
,
J.
,
2008
, “
Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications
,”
AIAA 46th Aerospace Sciences Meeting and Exhibit
, Reno, NV, January 7–10,
AIAA
Paper No. 2008-664. 10.2514/6.2008-664
23.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
24.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
25.
Fransen
,
R.
,
Vial
,
L.
, and
Gicquel
,
L. Y.
,
2013
, “
Large Eddy Simulation of Rotating Ribbed Channel
,”
ASME
Paper No. GT2013-95076. 10.1115/GT2013-95076
26.
Gourdain
,
N.
, and
Leboeuf
,
F.
,
2009
, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments
,”
ASME J. Turbomach.
,
131
(
2
), p.
021013
.10.1115/1.2988156
27.
Gourdain
,
N.
,
Wlassow
,
F.
, and
Ottavy
,
X.
,
2012
, “
Effect of Tip Clearance Dimensions and Control of Unsteady Flows in a Multi-Stage High-Pressure Compressor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051005
.10.1115/1.4003815
28.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
29.
Benoit
,
L.
,
2004
, “
Calculations of Thermo-Acoustic Eigenmodes of an Annular Combustion Chamber,” CERFACS/Lehrstuhl für Thermodynamik
, Toulouse, France, Technical Report No. TR/CFD/04/44, available at: http://www.cerfacs.fr/~cfdbib/repository/TR_CFD_04_44.pdf
30.
Benoit
,
L.
,
2005
, “
Prédiction Des Instabilités Thermoacoustiques Dans Les Turbines à Gaz
,” Ph.D. thesis, Université de Montpellier II, Montpellier, France.
31.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards, Inc.
,
Philadelphia, PA
.
32.
Wieczorek
,
K.
,
2010
, “
Numerical Study of Mach Number Effects on Combustion Instability
,” Ph.D. thesis, University of Montpellier II, Montpellier, France.
33.
Tyler
,
J. M.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Technical Paper 620532.10.4271/620532
34.
Courtiade
,
N.
,
Ottavy
,
X.
, and
Gourdain
,
N.
,
2010
, “
Experimental Investigation of Rotating Stall in a High Speed Multi-Stage Axial Compressor
,”
9th European Turbomachinery Conference
, Istanbul, Turkey, March 21–25.
35.
Courtiade
,
N.
, and
Ottavy
,
X.
,
2012
, “
Experimental Study of Surge Precursors in a High-Speed Multistage Compressor
,”
ASME J. Turbomach.
,
135
(6), p.
061018
.10.1115/1.4023462
36.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
37.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Power
,
98
(
2
), pp.
199
211
.10.1115/1.3446139
38.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(2), pp.
193
242
.10.1115/1.3241725
39.
Gomar
,
A.
,
Léonard
,
T.
, and others,
2012
, “
Antares: Python Post-Processing Library
,” Centre Européen de Recherche et de Formation Avancéen Calcul Scientifique (CERFACS), Toulouse, France, http://cerfacs.fr/antares/
You do not currently have access to this content.