Interaction between rotating impeller and stationary diffuser in a centrifugal compressor is of practical importance in evaluating system performance. The present study aims at investigating how the interaction influences the unsteady diffuser performance and understanding the physical phenomena in the centrifugal compressor. A computational fluid dynamics (CFD) method has been applied to predict the flow field in the compressor, which has a conventional vaned diffuser (VD) and a low solidity vaned diffuser (LSVD). The radial gaps between impeller and diffuser and different flow coefficients are varied. The results obtained show that the major parameter that influences the unsteady variation of diffuser performance is due to the circumferential variation of the flow angle at the diffuser vane leading edge. The physical phenomena behind the pressure recovery variation are identified as the unsteady vortex shedding and the associated energy losses. The vortex core region as well as the shedding of vortices from the diffuser vane are triggered by the variation in the diffuser vane loading, which in turn is influenced by the circumferential variation of the impeller wake region. There is little unsteady variation of flow angle in the span-wise direction. This indicates that the steady state performance characteristics are related to the span-wise variation of flow angle, while the unsteady characteristics are contributed by the circumferential variation of flow angle. At design conditions, dominant frequency components of pressure fluctuation are all periodic and at near stall, these are aperiodic.

References

References
1.
Inoue
,
M.
, and
Cumpsty
,
N. A.
,
1984
, “
Experimental Study of Centrifugal Impeller Discharge Flow in Vaneless and Vaned Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
455
467
.10.1115/1.3239588
2.
Kirtley
,
K. R.
, and
Beach
,
T. A.
,
1992
, “
Deterministic Blade Row Interactions in a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
114
, pp.
304
311
.10.1115/1.2929144
3.
Dawes
,
W.
,
1995
, “
A Simulation of the Unsteady Interaction of a Centrifugal Impeller With Its Vaned Diffuser: Flow Analysis
,”
ASME J. Turbomach.
,
117
, pp.
213
222
.10.1115/1.2835649
4.
Shum
,
Y. K. P.
,
Tan
,
C. S.
, and
Cumpsty
,
N. A.
,
2000
, “
Impeller–Diffuser Interaction in Centrifugal Compressor
,”
ASME J. Turbomach.
,
122
, pp.
777
786
.10.1115/1.1308570
5.
Boncinelli
,
P.
,
Ermini
,
M.
,
Bartolacci
,
S.
, and
Arnone
,
A.
,
2007
, “
Impeller–Diffuser Interaction in Centrifugal Compressors: Numerical Analysis of Radiver Test Case
,”
AIAA J. Propul. Power
,
23
, pp.
1304
1312
.10.2514/1.27028
6.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller–Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
, pp.
173
182
.10.1115/1.1516814
7.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller–Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
, pp.
183
192
.10.1115/1.1516815
8.
Filipenco
,
V.
Deniz
,
S.
,
Johnston
,
J.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N.
,
2000
, “
Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers: Part I—Discrete-Passage Diffuser
,”
ASME J. Turbomach.
,
122
, pp.
1
10
.10.1115/1.555418
9.
Deniz
,
S.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
2000
, “
Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers: Part II—Straight Channel Diffuser
,”
ASME J. Turbomach.
,
122
, pp.
11
21
.10.1115/1.555424
10.
Villanueva
,
V. D. A.
,
2006
, “
Characterization of the Flow Field Response to Vaneless Space Reduction in Centrifugal Compressors
,” M.S. thesis, Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology
, Cambridge, MA.
11.
Anish
,
S.
, and
Sitaram
,
N.
,
2009
, “
Computational Investigation of Impeller–Diffuser Interaction in a Centrifugal Compressor With Different Types of Diffusers
,”
Proc. Inst. Mech. Eng., Part A
,
223
, pp.
167
177
.10.1243/09576509JPE662
12.
Senoo
,
Y.
,
1978
,
Japanese patent application disclosure No. 11941/78 (in Japanese).
13.
Yoshinaga
,
Y.
,
Kaneki
,
T.
,
Kobayashi
,
H.
, and
Hoshino
,
M.
,
1987
, “
A Study of Performance Improvement for High Specific Speed Centrifugal Compressors by Using Diffusers With Half Guide Vanes
,”
ASME J. Fluids Eng.
,
109
, pp.
359
367
.10.1115/1.3242672
14.
Osborne
,
C.
, and
Sorokes
,
J.
,
1988
, “
The Application of Low Solidity Diffusers in Centrifugal Compressor
,”
Flow in Non Rotating Turbomachinery Component
, ASME FED Vol.
69
,
ASME
,
New York
, pp.
89
101
.
15.
Sorokes
,
J. M.
, and
Welch
,
J. P.
,
1992
, “
Experimental Results on a Rotatable Low Solidity Vaned Diffuser
,” ASME Paper No. 92-GT-19.
16.
Hohlweg
,
W. C.
,
Direnzi
,
G. L.
, and
Aungier
,
R. H.
,
1993
, “
Comparison of Conventional and Low Solidity Vaned Diffusers
,” ASME Paper No. 93-GT-98.
17.
Amineni
,
N. K.
,
1996
, “
Design and Development of Advanced Vaned Diffusers for Centrifugal Compressors
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
18.
Koumoutsos
,
A.
,
Tourlidakis
,
A.
, and
Elder
,
R. L.
,
2000
, “
Computational Studies of Unsteady Flows in a Centrifugal Compressor Stage
,”
Proc. Inst. Mech. Eng., Part A
,
214
, pp.
611
633
.10.1243/0957650001538146
19.
Kim
,
Y.
,
Engeda
,
A.
,
Aungier
,
R.
, and
Amineni
,
N.
,
2002
, “
A Centrifugal Compressor Stage With Wide Flow Range Vaned Diffusers and Different Inlet Configurations
,”
Proc. Inst. Mech. Eng., Part A
,
216
, pp.
307
320
.10.1243/09576500260251156
20.
Siva Reddy
,
T.
Ch.
,
Ramana Murty
,
G. V.
,
Mukkavilli
,
P.
, and
Reddy
,
D. N.
,
2004
, “
Effect of Settling Angle of a Low-Solidity Vaned Diffuser on the Performance of a Centrifugal Compressor Stage
,”
Proc. Inst. Mech. Eng., Part A
,
218
, pp.
637
646
.10.1243/0957650042584294
21.
Engeda
,
A.
,
2001
, “
The Design and Performance Results of Simple Flat Plate Low Solidity Vaned Diffusers
,”
Proc. Inst. Mech. Eng., Part A
,
215
, pp.
109
118
.10.1243/0957650011536471
22.
Issac
,
J. M.
,
Sitaram
,
N.
, and
Govardhan
,
M.
,
2004
, “
Effect of Diffuser Vane Height and Position on the Performance of a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
218
, pp.
647
654
.10.1243/0957650042584320
23.
Roache
,
P. J.
,
1998
, “
Verification and Validation in Computational Science and Engineering
,”
Hermosa Publishers
, Albuquerque,
NM
.
24.
Smirnov
,
P. E.
,
Hansen
,
T.
, and
Menter
,
F. R.
,
2007
, “
Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps
,”
ASME
Paper No. GT2007-27376.10.1115/GT2007-27376
25.
Guo
,
Q.
,
Chen
,
H.
,
Zhu
,
X. C.
,
Du
,
Z. H.
, and
Zhao
,
Y.
,
2007
, “
Numerical Simulations of a Stall Inside a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
221
, pp.
683
693
.10.1243/09576509JPE417
26.
Issac
,
J. M.
,
2004
, “
Performance and Flow Field Measurements in Different Types of Diffusers of a Centrifugal Compressor
,” Ph.D. thesis, IIT Madras, Chennai, India.
You do not currently have access to this content.