This paper presents the verification of the boundary layer modeling approach, which relies on a γ-Reθt model proposed by Menter et al. (2006, “A Correlation-Based Transition Model using Local Variables—Part I: Model Formation,” J. Turbomach., 128(3), pp. 413–422). This model was extended by laminar-turbulent transition correlations proposed by Piotrowski et al. (2008, “Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation,” Proceedings of the ASME Turbo Expo, Paper No. GT2008-50796) as well as Stripf et al.'s (2009, “Extended Models for Transitional Rough Wall Boundary Layers with Heat Transfer—Part I: Model Formulation,” J. Turbomach., 131(3), 031016) correlations, which take into account the effects of surface roughness. To blend between the laminar and fully turbulent boundary layer over rough wall, the modified intermittency equation is used. To verify the model, a flat plate with zero and nonzero pressure gradient test cases as well as the high pressure turbine blade case were chosen. Furthermore, the model was applied for unsteady calculations of the turbine blade profile as well as the Lou and Hourmouziadis (2000, “Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions,” J. Turbomach., 122(4), pp. 634–643) flat plate test case, with an induced pressure profile typical for a suction side of highly-loaded turbine airfoil. The combined effect of roughness and wake passing were studied. The studies proved that the proposed modeling approach (ITMR hereinafter) appeared to be sufficiently precise and enabled for a qualitatively correct prediction of the boundary layer development for the tested simple flow configurations. The results of unsteady calculations indicated that the combined impact of wakes and the surface roughness could be beneficial for the efficiency of the blade rows, but mainly in the case of strong separation occurring on highly-loaded blade profiles. It was also demonstrated that the roughness hardly influences the location of wake induced transition, but has an impact on the flow in between the wakes.

References

References
1.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
,
2003
, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,”
ASME
Paper No. GT2003-38580.10.1115/GT2003-38580
2.
Waigh
,
D. R.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.10.2514/2.491
3.
Boynton
,
J. L.
,
Tabibzadeh
,
R.
, and
Hudson
,
S. T.
,
1993
, “
Investigation of Rotor Blade Roughness Effects on Turbine Performance
,”
ASME J. Turbomach.
,
115
(
3
), pp.
614
620
.10.1115/1.2929298
4.
Hummel
,
F.
,
Lötzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
,
2005
, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME J. Turbomach.
,
127
(
3
), pp.
453
461
.10.1115/1.1860377
5.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New LPT Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.10.1115/1.3148475
6.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
H.-J.
, and
Witting
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulation
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.10.1115/1.2992511
7.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effect in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
8.
Dassler
,
P.
,
Kozulovic
,
D.
, and
Fiala
,
A.
,
2010
, “
Modelling of Roughness-Induced Transition Using Local Variables
,”
Proceedings of the 5th European Conference on CFD
(ECCOMAS CFD 2010), Lisbon, Portugal, June 14–17.
9.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formation
,”
J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
10.
Piotrowski
,
W.
,
Elsner
,
W.
, and
Drobniak
,
S.
,
2008
, “
Transition Prediction on Turbine Blade Profile With Intermittency Transport Equation
,”
ASME
Paper No. GT2008-50796.10.1115/GT2008-50796
11.
Medic
,
G.
, and
Durbin
,
P. A.
,
2002
, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
,
124
(
2
), pp.
187
192
.10.1115/1.1458020
12.
Piotrowski
,
W.
,
Elsner
,
W.
, and
Drobniak
,
S.
,
2010
, “
Transition Prediction on Turbine Blade Profile With Intermittency Transport Equation
,”
ASME J. Turbomach.
,
132
(
1
), p.
011020
.10.1115/1.3072716
13.
Elsner
,
W.
, and
Warzecha
,
P.
,
2010
, “
Modeling of Rough Wall Boundary Layers With Intermittency Transport Model
,”
TASK Q.
,
14
(
3
), pp.
271
282
.
14.
Perry
,
A. E.
,
Schofield
,
W. H.
, and
Joubert
,
P. N.
,
1969
, “
Rough Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
37
, pp.
383
413
.10.1017/S0022112069000619
15.
Hellsten
,
A.
, and
Laine
,
S.
,
1997
, “
Extension of the k–ω-SST Turbulence Model for Flows Over Rough Walls
,”
AIAA
Paper No. 97-3577.10.2514/6.1997-3577
16.
Healzer
,
J. M.
,
1974
, “
The Turbulent Boundary Layer on a Rough, Porous Plate: Experimental Heat Transfer With Uniform Blowing
,”
Department of Mechanical Engineering, Stanford University
,
Stanford, CA
, Report No. HMT-18.
17.
Coleman
,
H. W.
,
Moffat
,
R. J.
, and
Kays
,
W. M.
,
1977
, “
The Accelerated Fully Rough Turbulent Boundary Layer
,”
J. Fluid Mech.
,
82
(
3
), pp.
507
528
.10.1017/S0022112077000810
18.
Stripf
,
M.
,
2007
, “
Einfluss der Oberflaechenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,” Ph.D. thesis, Universitaet Karlsruhe, Karlsruhe, Germany.
19.
Mills
,
A.
, and
Hang
,
X.
,
1983
, “
On the Skin Friction Coefficient for a Fully Rough Flat Plate
,”
ASME J. Fluids Eng.
,
105
(
3
), pp.
364
365
.10.1115/1.3241008
20.
Pimenta, M. M., Moffat, R. J., and Kays, W. M., 1975, “The Turbulent Boundary Layer: An Experimental Study of the Transport of Momentum and Heat With the Effect of Roughness,” Report HMT-2l, Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA.
21.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Witting
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part II: Model Validation and Benchmarking
,”
ASME J. Turbomach.
,
131
(
3
), p.
031017
.10.1115/1.2992512
22.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
.10.1115/1.1308568
23.
Zarzycki
,
R.
, and
Elsner
,
W.
,
2005
, “
The Effect of Wake Parameters on the Transitional Boundary Layer on Turbine Blade
,”
Proc. Inst. Mech. Eng., Part A
,
219
, pp.
471
480
.10.1243/095765005X28625
24.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
You do not currently have access to this content.