A film-cooling configuration generating an antikidney vortex pair is studied. The configuration features cylindrical cooling holes inclined at an angle of α=35  deg and arranged in two spanwise rows with row-wise alternating yaw angles ±β. Results of several large-eddy simulations are presented with varying blowing conditions and yaw angles. The effects on the achieved cooling and the generated losses are studied. The film-cooling Reynolds number (based on the fully turbulent hot boundary layer along a flat plate and the cooling hole diameter) is 6570 and the Mach number is 0.2. The density as well as mass-flux ratios (DR and M) range from 1 to 2 and the yaw angles from β=±30  deg to ±60  deg. We identify scaling parameters and explain relevant mechanisms. Moreover, the flow field is subdivided into three regions featuring different physical mechanisms: the single-jet, the jet-interaction, and the diffusion region. A strong antikidney vortex pair occurs for high momentum ratios I. For the highest ratio, I = 2.3, our configuration may provide even better effectiveness than cooling with particular fan-shaped holes.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
T. F.
Irvine
, Jr.
and
J. P.
Hartnett
, eds.,
Academic
,
New York
, pp.
321
379
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Ahn
,
J.
,
Jung
,
I. S.
, and
Lee
,
J. S.
,
2003
, “
Film Cooling From Two Rows of Holes With Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
91
99
.10.1016/S0142-727X(02)00200-X
4.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.10.1115/1.2720508
5.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
, p.
031020
.10.1115/1.2777194
6.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surrounding Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.10.1007/s00231-009-0523-8
7.
Barthet
,
S.
, and
Bario
,
F.
,
2001
, “
Experimental Investigation of Film Cooling Flow Induced by Shaped Holes on a Turbine Blade
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
313
320
.10.1111/j.1749-6632.2001.tb05865.x
8.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Large-Eddy Simulation of a Bi-Periodic Turbulent Flow With Effusion
,”
J. Fluid Mech.
,
598
, pp.
27
65
.10.1017/S0022112007009664
9.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
18
34
.10.1016/j.ijheatfluidflow.2007.07.010
10.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2007
, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
129
(
2
), pp.
221
231
.10.1115/1.2437219
11.
Ziefle
,
J.
, and
Kleiser
,
L.
, “
Numerical Investigation of a Film-Cooling Flow Structure: Effect of Crossflow Turbulence
,”
ASME J. Turbomach
,
135
(
4
), p.
041001
.10.1115/1.4023361
12.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2007
, “
LES of Film Cooling Efficiency for Different Hole Shapes
,”
Proc. 5th International Symposium on Turbulence and Shear Flow Phenomena
, Munich, Germany, August 26–29, pp.
683
688
.
13.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2009
, “
Large-Eddy Simulation of Interacting Film Cooling Jets
,”
ASME
Paper No. GT2009-5916.10.1115/GT2009-59164
14.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
15.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
16.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.10.1115/1.1344905
17.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.10.1115/1.2911406
18.
Gräf
,
L.
, and
Kleiser
,
L.
,
2011
, “
Large-Eddy Simulation of Double-Row Compound-Angle Film Cooling: Setup and Validation
,”
Comput. Fluids
,
43
(
1
), pp.
58
67
.10.1016/j.compfluid.2010.09.032
19.
Gräf
,
L.
, and
Kleiser
,
L.
,
2012
, “
Flow-Field Analysis of Anti-Kidney Vortex Film-Cooling
,”
J. Therm. Sci.
,
21
(
1
), pp.
66
76
.10.1007/s11630-012-0520-y
20.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.10.1115/1.4002064
21.
Schlatter
,
P.
,
Stolz
,
S.
, and
Kleiser
,
L.
,
2004
, “
LES of Transitional Flows Using the Approximate Deconvolution Model
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
549
558
.10.1016/j.ijheatfluidflow.2004.02.020
22.
Bodony
,
D. J.
,
2006
, “
Analysis of Sponge Zones for Computational Fluid Mechanics
,”
J. Comput. Phys.
,
212
(
2
), pp.
681
702
.10.1016/j.jcp.2005.07.014
23.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
24.
Magagnato
,
F.
,
Pritz
,
B.
, and
Gabi
,
M.
,
2006
, “
Inflow Conditions for Large-Eddy Simulation of Compressible Flow in a Combustion Chamber
,”
Proc. 5th International Symposium on Turbulence, Heat and Mass Transfer
, Dubrovnik, Croatia, September 25–29,
Y. N. K.
Hanjalić
and
S.
Jakirlic
, eds., Begell House Publishers, Reading, CT, pp.
343
346
.10.1615/ICHMT.2006.TurbulHeatMassTransf.660
25.
Gräf
,
L.
,
2012
, “
Film Cooling Using Anti-Kidney Vortices Investigated by Large-Eddy Simulation
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.
26.
Lee
,
S. W.
,
Kim
,
Y. B.
, and
Lee
,
J. S.
,
1997
, “
Flow Characteristics and Aerodynamic Losses of Film Cooling Jets With Compound Angle Orientations
,”
ASME J. Turbomach.
,
119
(
2
), pp.
310
319
.10.1115/1.2841114
27.
Aga
,
V.
,
Mansour
,
M.
, and
Abhari
,
R. S.
,
2009
, “
Aerothermal Performance of Streamwise and Compound Angled Pulsating Film Cooling Jets
,”
ASME J. Turbomach.
,
131
(
4
), p.
041015
.10.1115/1.3072489
28.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.10.1115/1.2019315
29.
Hartsel
,
J. E.
,
1972
, “
Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils
,”
AIAA
Paper No. 72-11.10.2514/6.1972-11
30.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
31.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Engine-Like Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.10.1115/1.1504443
32.
Laveau
,
B.
, and
Abhari
,
R. S.
,
2010
, “
Influence of Flow Structure on Shaped Hole Film Cooling Performance
,”
ASME
Paper No. GT2010-23032.10.1115/GT2010-23032
You do not currently have access to this content.