Blades of high pressure turbines have a relatively small aspect ratio that produces major secondary flow regions close to the hub and tip. The secondary flows caused by a system of hub and tip vortices induce drag forces resulting in an increase of secondary flow losses, and thus, a reduction of stage efficiency. Given the high level of technological maturity and the current state of turbine aerodynamic efficiency, major efficiency improvement, if any, can be achieved only by significant R&D effort. In contrast, a moderate increase in aerodynamic efficiency is attainable by reducing the effect of parasitic vortices such as those mentioned above. Introducing an appropriate nonaxisymmetric endwall contouring reduces the secondary flow effect caused by the pressure difference between pressure and suction surfaces. Likewise, attaching leading edge fillets reduces the strength of horseshoe vortices. While an appropriate endwall contouring design requires special care, the design of the leading edge fillet is straightforward. In this paper, we present a physics based method which enables researchers and engineers to design endwall contours for any arbitrary blade type regardless of the blade loading, degree of reaction, stage load and flow coefficients. A thorough step-by-step design instruction is followed by its application to the second rotor row of the three-stage research turbine of the Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. Comprehensive numerical calculations of the flow field, including the secondary flow, show the positive impact of an appropriately designed endwall contouring on the efficiency. The results also show how an inappropriately designed contour can be detrimental to turbine efficiency.

References

1.
Schobeiri
,
M. T.
,
2012
,
Turbomachinery Flow Physics and Dynamic Performance
, 2nd ed.,
Springer-Verlag
,
Heidelberg
, Germany.
2.
Traupel
,
W.
,
1977
,
Thermische Turbomaschinen
,
Bd. I, Springer-Verlag
,
Berlin
.
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.10.1115/1.2929299
4.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine
,”
ASME Trans. J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.10.1115/1.3239704
5.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. NY Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
6.
Schobeiri
,
M. T.
,
Gilarranz
,
J.
, and
Johansen
,
E.
,
1999
, “
Final Report on: Efficiency, Performance, and Interstage Flow Field Measurement of Siemens-Westinghouse HP-Turbine Blade Series 9600 and 5600
,” TPFL-Westinghouse Report 1997–1, September.
7.
Schobeiri
,
M. T.
,
Gillaranz
,
J. L.
, and
Johansen
,
E. S.
,
2000
, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine With 3-D Blades, Design Point and Off-Design Experimental Investigations
,”
Proceedings of ASME Turbo Expo 2000
, Munich, May 8–11, ASME Paper No. 2000-GT-484.
8.
Schobeiri
,
M. T.
,
Suryanaryanan
,
A.
,
Jerman
,
C.
, and
Neuenschwander
,
T.
,
2004
, “
A Comparative Aerodynamic and Performance Study of a Three-Stage High Pressure Turbine With 3-D Bowed Blades and Cylindrical Blades
,”
Proceedings of ASME Turbo Expo 2004 Power of Land Air and Sea
,
Vienna, Austria
, June 14–17,
ASME
Paper No. GT2004-53650.10.1115/GT2004-53650
9.
Chibli
,
H.
,
Sherif
,
A.
, and
Schobeiri
,
M. T.
,
2009
, “
An Experimental and Numerical Study of the Effects of Flow Incidence Angles on the Performance of a Stator Blade Cascade of a High Pressure Steam Turbine
,”
Proceedings of ASME Turbo Expo 2009
,
Orlando FL
, June 8–12,
ASME
Paper No. GT2009-59131.10.1115/GT2009-59131
10.
Sauer
,
H.
, and
Wolf
,
H.
,
1993
, “
The Influence of the Inlet Boundary Layers on the Secondary Losses of Turbine Stages
,”
AGARD-Conference Proceedings 537
: Technology Requirements for Small Gas Turbines,
Montreal, Canada
, October 4–8.
11.
Sauer
,
H.
, and
Wolf
,
H.
,
1997
, “
Influencing the Secondary Flow in Turbine Cascades by the Modification of the Blade Leading Edge
,” 2nd
European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Antwerp
, Belgium, March 5–7.
12.
Sauer
,
H.
,
Wolf
,
H.
, and
Vogeler
,
K.
,
2000
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,” ASME Paper No. 2000-GT-0473.
13.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2001
, “
Computational Design and Experimental Evaluation of Using A Leading Edge Fillet on a Gas Turbine Vane
,”
Proceedings of ASME Turbo Expo 2001
, New Orleans, LA, June 4–7, ASME Paper No. 2001-GT-0404.
14.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2003
, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,”
Proceedings of ASME Turbo Expo 2003
, Atlanta, GA, June 16–19, ASME Paper No. 2003-GT-38898.
15.
Hartland
,
J.
, and
Gregory-Smith
,
D.
,
2002
, “
A Design Method for the Profiling of End Walls in Turbines
,”
Proceedings of ASME Turbo Expo 2002
, Amsterdam, June 3–6,
ASME
Paper No. GT2002-30433.10.1115/GT2002-30433
16.
Ingram
,
G.
,
Gregory-Smith
,
D. G.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
Proceedings of ASME Turbo Expo 2002
, Amsterdam, June 3–6,
ASME
Paper No. GT2002-30339.10.1115/GT2002-30339
17.
Eymann
,
S.
,
Reinmöller
,
U.
, and
Niehuis
,
R.
,
2002
, “
Improving 3D Flow Characteristics in a Multistage LP Turbine by Means of Endwall Contouring and Airfoil Design Modification: Part 1—Design and Experimental Investigation
,”
Proceedings of ASME Turbo Expo 2002
, Amsterdam, June 3–6,
ASME
Paper No. GT2002-30352.10.1115/GT2002-30352
18.
Sauer
,
H.
,
Müller
,
R.
, and
Vogeler
,
K.
,
2000
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,” Proceedings of ASME Turbo Expo 2000, Munich, May 8–11, ASME Paper No. 2000-GT-0473.
19.
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
Proceedings of ASME Turbo Expo 2002
, Amsterdam, June 3–6,
ASME
Paper No. GT2002-30339.10.1115/GT2002-30339
20.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2004
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
Proceedings of ASME Turbo Expo 2004
, Vienna, June 14–17,
ASME
Paper No. GT2004-53589.10.1115/GT2004-53589
21.
Saha
,
A. K.
, and
Acharya
,
S.
,
2006
, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Non-Axisymmetric Blade Passage
,”
Proceedings of ASME Turbo Expo 2006
, Barcelona, May 8–11,
ASME
Paper No. GT2006-90390.10.1115/GT2006-90390
22.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
D.
,
Knezevici
,
C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
Proceedings of ASME Turbo Expo 2007
, Montreal, Canada, May 14–17,
ASME
Paper No. GT2007-27579.10.1115/GT2007-27579
23.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M.
,
Shahpar
,
D. S.
,
Harland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetic Turbine End Wall Design—Part I: Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
, pp.
278
285
.10.1115/1.555445
24.
Harland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetic Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
, pp.
286
293
.10.1115/1.555446
25.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2001
, “
Improving The Efficiency of The Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part I—Turbine Design
,”
Proceedings of ASME Turbo Expo 2001
, New Orleans, LA, June 4–7, ASME Paper No. 2001-GT-0444.
26.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Brennan
,
G.
, and
Newman
,
D. A.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
Proceedings of ASME Turbo Expo 2002
, Amsterdam, June 3–6,
ASME
Paper No. GT2002-30337.10.1115/GT2002-30337
27.
Germain
,
T.
,
Nagel
,
M.
,
Raab
, I
.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric End Walls: Part I—Endwall Design and Performance
,”
Proceedings of ASME Turbo Expo 2008
, Berlin, June 9–13,
ASME
Paper No. GT2008-50469.10.1115/GT2008-50469
28.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2009
, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,”
Proceedings of ASME Turbo Expo 2009
, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-59169.10.1115/GT2009-59169
29.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
The Performance of a Generic Non-Axisymmetric End Wall in a Single Stage, Rotating Turbine at On and Off-Design Conditions
,”
Proceedings of ASME Turbo Expo 2010
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22006.10.1115/GT2010-22006
30.
Schobeiri
,
M. T.
,
Abdelfattah
,
S.
, and Chibli, H.,
2012
, “
Investigating the Cause of Computational Fluid Dynamics Deficiencies in Accurately Predicting the Efficiency and Performance of High Pressure Turbines: A Combined Experimental and Numerical Study
,”
ASME J. Fluid Eng.
, 134(10), p. 101104.10.1115/1.4007679
31.
Abdelfattah
,
S.
, and
Schobeiri
,
M.T.
,
2011
, “
Experimental and Numerical Investigations of Aerodynamic Behavior of a Three-Stage Hp-Turbine at Different Operating Conditions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 226(6), pp. 1535–1549.10.1177/0954406211423725
32.
Schobeiri
,
M. T.
,
2010
,
Fluid Mechanics for Engineers
: A Graduate Textbook,
Springer Verlag
,
Berlin
.
33.
Schobeiri
,
M. T.
,
1979
, “
Theoretische und Experimentelle Untersuchungen Laminarer und Turbulenter Strömungen in Diffusoren
,” Ph.D. dissertation, Technische Hochschule Darmstadt, D17, Darmstadt, Germany.
You do not currently have access to this content.