The unsteady aerodynamics of a single-stage high-pressure turbine has been the subject of a study involving detailed measurements and computations. Data and predictions for this experiment have been presented previously, but the current study compares predictions obtained using the nonlinear harmonic simulation method to results obtained using a time-marching simulation with phase-lag boundary conditions. The experimental configuration consisted of a single-stage high-pressure turbine (HPT) and the adjacent, downstream, low-pressure turbine nozzle row (LPV) with an aerodynamic design that is typical to that of a commercial high-pressure ratio HPT and LPV. The flow path geometry was equivalent to engine hardware and operated at the proper design-corrected conditions to match cruise conditions. The high-pressure vane and blade were uncooled for these comparisons. All three blade rows are instrumented with flush-mounted, high-frequency response pressure transducers on the airfoil surfaces and the inner and outer flow path surfaces, which include the rotating blade platform and the stationary shroud above the rotating blade. Predictions of the time-dependent flow field for the turbine flow path were obtained using a three-dimensional, Reynolds-averaged Navier–Stokes computational fluid dynamics (CFD) code. Using a two blade row computational model of the turbine flow path, the unsteady surface pressure for the high-pressure vane and rotor was calculated using both unsteady methods. The two sets of predictions are then compared to the measurements looking at both time-averaged and time-accurate results, which show good correlation between the two methods and the measurements. This paper concentrates on the similarities and differences between the two unsteady methods, and how the predictions compare with the measurements since the faster harmonic solution could allow turbomachinery designers to incorporate unsteady calculations in the design process without sacrificing accuracy when compared to the phase-lag method.

References

References
1.
Adamczyk
,
J. J.
,
1985
, “
Model Equations for Simulating Flows in Multistage Turbomachinery
,”
NASA Lewis Research Center
,
Cleveland, OH
, NASA-TM-86869.
2.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1982
, “
Development of a Linear Unsteady Aerodynamic Analysis for Finite-Deflection Subsonic Cascades
,”
AIAA J.
,
20
(
9
), pp.
1259
1267
.10.2514/3.51186
3.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1984
, “
A Linearized Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Fluid. Mech.
,
149
, pp.
403
429
.10.1017/S002211208400272X
4.
Hall
,
K. C.
, and
Crawley
,
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linear Euler Equations
,”
AIAA.J
,
27
(
6
), pp.
777
787
.10.2514/3.10178
5.
Hall
,
K. C.
,
Clark
,
W. S.
, and
Lorence
,
C. B.
,
1994
, “
A Linearized Euler Analysis of Unsteady Transonic Flows in Turbomachinery
,”
ASME J. Turbomach.
,
116
(
3
), pp.
477
488
.10.1115/1.2929437
6.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Nonlinear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
, pp.
508
514
.10.1115/1.2841747
7.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
8.
Chen
,
T.
,
Vasanthakumar
,
P.
, and
He
,
L.
,
2001
, “
Analysis of Unsteady Blade Row Interaction Using Nonlinear Harmonic Approach
,”
J. Propul. Power
,
17
(
3
), pp.
651
658
.10.2514/2.5792
9.
Vilmin
,
S.
,
Lorrain
,
E.
,
Hirsch
,
C.
, and
Swoboda
,
M.
,
2006
, “
Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method
,”
ASME Turbo Expo
,
Barcelona, Spain
, May 8–11,
ASME
Paper No. GT2006-90210.10.1115/GT2006-90210
10.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
, pp.
329
341
.10.1016/j.paerosci.2010.04.001
11.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
(
11
), pp.
1559
1568
.10.2514/3.60823
12.
Rai
,
M. M.
,
1987
, “
Navier–Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
,
3
, pp.
387
396
.10.2514/3.23003
13.
Rai
,
M. M.
,
1989
, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction; Part I—Methodology
,”
J. Propul.
,
5
(
3
), pp.
305
311
.10.2514/3.23154
14.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. H.
,
1982
, “
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
, pp.
387
396
.10.1115/1.3227339
15.
Rai
,
M. M.
,
1989
, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction; Part II—Results
,”
J. Propul.
,
5
(
3
), pp.
312
319
.10.2514/3.51296
16.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier–Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
, pp.
679
689
.10.1115/1.2840923
17.
Rao
,
K. V.
,
Delaney
,
R. A.
, and
Dunn
,
M.G.
,
1990
, “
Investigation of Unsteady Flow Through Transonic Turbine Stage Part I: Analysis
,”
AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference
,
Orlando, FL
, July 16–18,
AIAA
Paper No. 90-2408.10.2514/6.1990-2408
18.
Dunn
,
M. G.
,
Bennett
,
W.
,
Delaney
,
R. A.
, and
Rao
,
K.V.
,
1990
, “
Investigation of Unsteady Flow Through a Transonic Turbine Stage: Part II—Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference
,
Orlando, FL
, July 16–18,
AIAA
Paper No. 90-2409.10.2514/6.1990-2409
19.
Dunn
,
M. G.
,
Bennett
,
W. A.
,
Delaney
,
R. A.
, and
Rao
,
K. V.
,
1992
, “
Investigation of Unsteady Flow Through a Transonic Turbine Stage: Data/Prediction Comparison for Time-Averaged and Phase-Resolved Pressure Data
,”
ASME J. Turbomach.
,
114
, pp.
91
99
.10.1115/1.2928003
20.
Giles
,
M.
, and
Haimes
,
R.
,
1993
, “
Validation of a Numerical Method for Unsteady Flow Calculations
,”
ASME J. Turbomach.
,
115
, pp.
110
117
.10.1115/1.2929195
21.
Venable
,
B. L.
,
Delaney
,
R. A.
,
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
, and
Abhari
,
R. S.
,
1999
, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics: Part I—Time Resolved Data and Analysis
,”
ASME J. Turbomach.
,
121
, pp.
663
672
.10.1115/1.2836718
22.
Busby
,
J. A.
,
Davis
,
R. L.
,
Dorney
,
D. J.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Abhari
,
R. S.
,
Venable
,
B. L.
, and
Delaney
,
R. A.
,
1999
, “
Influence of Vane-Blade Spacing on Transonic Turbine Stage Aerodynamics: Part II—Time Resolved Data and Analysis
,”
ASME J. Turbomach.
,
121
, pp.
673
682
.10.1115/1.2836719
23.
Barter
,
J. W.
,
Vitt
,
P. H.
, and
Chen
,
J.P.
,
2000
, “
Interaction Effects in a Transonic Turbine Stage
,”
ASME Turbo Expo
,
Munich, Germany
, May 8–11, ASME Paper No. 2000-GT-0376.
24.
Van Zante
,
D.
,
Chen
,
J. P.
,
Hathaway
,
M.
, and
Chriss
,
R.
,
2008
, “
The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates From Time-Accurate, Multistage, Navier–Stokes Simulations
,”
ASME J. Turbomach.
,
130
(
1
), p.
011009
.10.1115/1.2775486
25.
Green
,
B. R.
,
Barter
,
J. W.
,
Dunn
,
M. G.
, and
Haldeman
,
C.W.
,
2005
, “
Averaged and Time-Dependent Aerodynamics for a High-Pressure Turbine Blade Tip Cavity and Stationary Shroud: Comparison of Computational and Experimental Results
,”
ASME J. Turbomach.
,
127
, pp.
736
746
.10.1115/1.1934410
26.
Crosh
,
E. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Holmes
,
D. G.
, and
Mitchell
,
B. E.
,
2010
, “
Investigation of Turbine Shroud Distortions on the Aerodynamics of a One and One-Half Stage High-Pressure Turbine
,”
ASME J. Turbomach.
,
133
(
3
), p.
031002
.10.1115/1.4001176
27.
Haldeman
,
C. W.
,
2003
, “
An Experimental Investigation of Clocking Effects on Turbine Aerodynamics Using a Modern 3-D One and One-Half Stage High Pressure Turbine for Code Verification and Flow Model Development
,”
Ph.D. dissertation, Department of Aeronautical and Astronautical Engineering, The Ohio State University
,
Columbus, OH
.
28.
Dunn
,
M. G.
,
Moller
,
J. C.
, and
Steel
,
R. C.
,
1989
, “
Operating Point Verification for a Large Shock Tunnel Test Facility
,” Paper No. WRDC-TR-2027.
29.
Dunn
,
M. G.
,
1986
, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part 1—Time-Averaged Results
,”
ASME J Turbomach.
,
108
, pp.
90
97
.10.1115/1.3262029
30.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
1995
, “
Phase-Resolved Surface Pressure and Heat-Transfer Measurements on the Blade of a Two-Stage Turbine
.”
ASME J Fluid. Eng.
,
117
, pp.
653
658
.10.1115/1.2817318
31.
Green
,
B. R.
Mathison
,
R. M.
, and
Dunn
,
M. G.
2012
. “
Time-Averaged and Time-Accurate Aerodynamic Effects of Forward Rotor Cavity Purge Flow for a Modern, One and One-Half Stage High-Pressure Turbine—Part I: Analytical and Experimental Comparisons
,”
ASME J. Turbomach
., (in press).10.1115/1.4024774
32.
Green
,
B. R.
Mathison
,
R. M.
, and
Dunn
,
M.G.
2012
. “
Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, One and One-Half Stage High-Pressure Turbine—Part II: Analytical Flow Field Analysis
,”
ASME J. Turbomach
., (in press).10.1115/1.4024776
33.
FINE/Turbo User's Manual
,
2007
, “
User Manual: FINE/Turbo v8 (Including Euranus) Flow Integrated Environment
,”
NUMECA International, Brussels, Belgium
.
34.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
1981
. “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time Stepping Schemes
,”
AIAA
Paper No. 81-1259.10.2514/6.1981-1259
35.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
1992
. “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.1992-439
36.
Chen
,
J. P.
,
Celestina
,
M. L.
, and
Adamczyk
,
J. J.
,
1994
, “
A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages
,” ASME Paper No. 94-GT-151.
You do not currently have access to this content.