One of the most intensively studied principles of harnessing the energy from ocean waves is the oscillating water column (OWC) device. The OWC converts the motion of the water waves into a bidirectional air flow, which in turn drives an air turbine. The bidirectional axial Wells turbine as a candidate for OWC power takeoff systems was the object of considerable research conducted in the last decades. The vast majority of the investigations focused on the aerodynamic performance. However, aiming at minimizing the overall environmental impact of this technology requires a new effort to reduce the aeroacoustic noise associated with a Wells turbine's operation. As for other turbomachinery, rotor blade skew is hypothesized to affect aeroacoustic noise sources favorably. Because of the unique symmetry of the blade shape of any Wells turbine, skew here means an inclination of the stagger line exclusively in circumferential direction and hence incorporates a combination of blade sweep and dihedral. Based on a blade element momentum theory, a new blade design methodology for a Wells turbine with skewed blades is established. Then, the effect of blade skew is assessed systematically by numerical simulations and experiments. As compared to a state-of-the-art rotor with straight blades, optimal backward/forward blade skew from hub to tip delays the onset of stall and increases the range of unstalled operation by approximately 5% in terms of static pressure head. As a Wells turbine in an OWC power plant operates cyclically along its characteristic, any extension of stall-free operating range has the potential of improving the energy yield. The flow-generated sound in unstalled operation was decreased up to 3 dB by optimal backward/forward blade skew. However, the predominate noise benefit in terms of equivalent sound power along complete operating cycles is due to the extended operating range without excessive sound due to stall.

References

References
1.
Falcão
,
A. F. d. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.10.1016/j.rser.2009.11.003
2.
Falcão
,
A. F. O.
, and
Gato
,
L. M. C.
,
2012
, “
Air Turbines
,”
Comprehensive Renewable Energy
, Vol.
8
,
A.
Sayigh
, ed.,
Elsevier
,
Oxford
, UK, pp.
111
149
.
3.
Wells
,
A. A.
,
1976
, “
Fluid Driven Rotary Transducer
,” British Patent Spec No. 1,595,700.
4.
Raghunathan
,
S.
,
1995
, “
The Wells Air Turbine for Wave Energy-Conversion
,”
Prog. Aerosp. Sci.
,
31
(
4
), pp.
335
386
.10.1016/0376-0421(95)00001-F
5.
Takao
,
M.
,
Setoguchi
,
T.
,
Kaneko
,
K.
,
Raghunathan
,
S.
, and
Inoue
,
M.
,
2002
, “
Noise Characteristics of Turbines for Wave Power Conversion
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
A3
), pp.
223
228
.10.1243/095765002320183540
6.
Carolus
,
T.
, and
Beiler
,
M. G.
,
1997
, “
Skewed Blades in Low Pressure Fans—A Survey of Noise Reduction Mechanisms
,”
Proc. 3rd AIAA/CEAS Aeroacoustics Conference
,
Atlanta, GA
, May 12–14,
AIAA
Paper No. 97-1591-CP, pp.
47
56
.10.2514/6.1997-1591
7.
Busemann
,
A.
,
1935
, “
Aerodynamischer Auftrieb bei Überschallgeschwindigkeit
,”
Luftfahrtforschung
,
12
(
6
), pp.
210
220
.
8.
Beiler
,
M. G.
, and
Carolus
,
T.
,
1999
, “
Computation and Measurement of the Flow in Axial Flow Fans With Skewed Blades
,”
ASME J. Turbomach.
,
121
(
1
), pp.
59
66
.10.1115/1.2841234
9.
Raghunathan
,
S.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
1989
, “
Some Techniques to Improve the Operation Range of the Wells Turbine for Wave Power Generator
,”
JSME Int. J. Ser. II
,
32
(
1
), pp.
71
77
.
10.
Raghunathan
,
S.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
1991
, “
Aerodynamics of Monoplane Wells Turbine—A Review
,”
Proc. 1st International Offshore and Polar Engineering Conference
,
Edinburgh, UK
, pp.
370
379
.
11.
Webster
,
M.
,
Gato
,
L. M. C.
, and
White
,
P. R. S.
,
1998
, “
Variation of Blade Shape and Its Effect on the Performance of the Wells Turbine
,”
Int. J. Ambient Energ.
,
19
(
3
), pp.
149
156
.10.1080/01430750.1998.9675702
12.
Webster
,
M.
, and
Gato
,
L. M. C.
,
1999
, “
The Effect of Rotor Blade Sweep on the Performance of the Wells Turbine
,”
Int. J. Offshore Polar Eng.
,
9
(
3
), pp.
233
239
.
13.
Webster
,
M.
, and
Gato
,
L. M. C.
,
2001
, “
The Effect of Rotor Blade Shape on the Performance of the Wells Turbine
,”
Int. J. Offshore Polar Eng.
,
11
(
3
), pp.
227
230
.
14.
Suzuki
,
M.
, and
Arakawa
,
C.
,
2008
, “
Influence of Blade Profiles on Flow Around Wells Turbine
,”
Int. J. Fluid Mach. Syst.
,
1
(
1
), pp.
148
154
.10.5293/IJFMS.2008.1.1.148
15.
Corsini
,
A.
,
Rispoli
,
F.
, and
Tuccimei
,
E.
,
2011
, “
Development of Air Turbines for Small Power OWC Plants
,”
Proc. 9th European Wave and Tidal Energy Conference
,
Southampton, UK
, September 5–9.
16.
Corsini
,
A.
,
Rispoli
,
F.
, and
Tezduyar
,
T. E.
,
2012
, “
Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
010910
.10.1115/1.4005060
17.
Corsini
,
A.
,
Marchegiani
,
A.
,
Minotti
,
S.
, and
Rispoli
,
F.
,
2011
, “
On the Use of Blade Sweep in Wells Turbines for Low Power Generation
,”
Third International Conference on Applied Energy
,
Perugia, Italy
, May 16–18.
18.
Raghunathan
,
S.
, and
Ombaka
,
O. O.
,
1985
, “
Effect of Frequency of Air Flow on the Performance of the Wells Turbine
,”
Int. J. Heat Fluid Flow
,
6
(
2
), pp.
127
132
.10.1016/0142-727X(85)90049-9
19.
Raghunathan
,
S.
,
Tan
,
C. P.
, and
Ombaka
,
O. O.
,
1985
, “
Performance of the Wells Self-Rectifying Air Turbine
,”
Aeronaut. J.
,
89
(
890
), pp.
369
379
.
20.
Betz
,
A.
,
1926
,
Wind-Energie und ihre Ausnutzung durch Windmühlen
,
Vandenhoeck & Ruprecht
,
Göttingen
, Germany.
21.
Gato
,
L. M. C.
, and
Falcao
,
A. F. D.
,
1984
, “
On the Theory of the Wells Turbine
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
628
633
.10.1115/1.3239616
22.
Smith
,
L. H. J.
, and
Yeh
,
H.
,
1963
, “
Sweep and Dihedral Effects in Axial-Flow Turbomachinery
,”
ASME J. Basic Eng.
, pp.
401
416
.10.1115/1.3656623
23.
Küchemann
,
D.
, and
Weber
,
J.
,
1952
, “
On the Chordwise Lift at the Centre of Swept Wings
,”
Aeronaut. Q.
,
2
, pp.
146
155
.
24.
Raghunathan
,
S.
,
1996
, “
Aerodynamics of Cascades at a Stagger Angle of 90 Degrees
,”
34th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 15–18,
AIAA
Paper No. 96-0283.10.2514/6.1996-283
25.
Raghunathan
,
S.
,
1988
, “
Aerodynamic Forces on Airfoils at High Angles of Attack
,”
AIAA Nat. Fluid Dynamics Congress
,
Cincinnati, OH
, July 25–28,
AIAA
Paper No. 88-3696-CP.10.2514/6.1988-3696
26.
Weinig
,
F.
,
1935
,
Die Strömung um die Schaufeln von Turbomaschinen
,
Verlag von Johann Ambrosius Barth
,
Leipzig
, Germany.
27.
Gareev
,
A.
,
Cooper
,
P.
, and
Kosasih
,
P. B.
,
2009
, “
CFD Analysis of Air Turbines as Power Take-Off Systems in Oscillating Water Column Wave Energy Conversion Plant
,”
Proc. 8th European Wave and Tidal Energy Conference
,
Uppsala, Sweden
, September 7–10, pp.
777
785
.
28.
Daly
,
J.
,
Frawley
,
P.
, and
Thakker
,
A.
,
2002
, “
A Computational Fluid Dynamics Comparison of Wells Turbine Blades in 2D and 3D Cascade Flow
,”
Proc. ASME 2002 Fluids Engineering Division Summer Meeting
,
Montreal, Canada
, July 14–18,
ASME
Paper No. FEDSM2002-31322, pp.
253
260
.10.1115/FEDSM2002-31322
29.
Daly
,
J.
,
Frawley
,
P.
, and
Thakker
,
A.
,
2002
, “
A 2D Computational Fluid Dynamics Analysis of Wells Turbine Blade Profiles in Isolated and Cascade Flow
,”
Proc. ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
,
Oslo, Norway
, June 23–28,
ASME
Paper No. OMAE2002-28304, pp.
497
505
.10.1115/OMAE2002-28304
30.
Starzmann
,
R.
,
Carolus
,
T.
,
Tease
,
K.
, and
Arlitt
,
R.
,
2011
, “
Wells Turbine Rotors: A Comparison of the Predicted and Measured Aerodynamic Performance
,”
Proc. 9th European Turbomachinery Conference
,
Istanbul, Turkey
, March 21–25, pp.
1085
1095
.
31.
Starzmann
,
R.
,
Carolus
,
T. H.
,
Tease
,
K.
, and
Arlitt
,
R.
,
2011
, “
Effect of Design Parmeters on Aero-Acoustic and Aerodynamic Performance of Wells Turbines
,”
ASME 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, June 19–24
,
ASME
Paper No. OMAE2011-49127, pp.
299
308
.10.1115/OMAE2011-4912710.1115/OMAE2011-49127
32.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
33.
ANSYS
,
2009
,
ANSYS CFX-Solver Modeling Guide, Release 12.1
,
ASME
,
Canonsburg, PA
.
34.
Torresi
,
M.
,
Camporeale
,
S. M.
, and
Pascazio
,
G.
,
2009
, “
Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071103
.10.1115/1.3155921
35.
van der Hegge-Zijnen
,
B. G.
,
1929
, “
Improved Instrument for the Simultaneous Determination of the Static Pressure, the Magnitude and the Direction of Velocity of Fluids
,”
Proc. R. Acad. Sci. Amsterdam
,
32
, pp.
658
663
.
36.
DIN EN ISO 3741
,
2001
,
Bestimmung der Schallleistungspegel von Geräuschquellen aus Schalldruckmessungen-Hallraumverfahren der Genauigkeitsklasse 1
,
Beuth Verlag
,
Berlin, Germany
.
37.
Starzmann
,
R.
,
2012
,
Aero-Acoustic Analysis of Wells Turbines for Ocean Wave Energy Conversion
,
VDI Verlag
,
Düsseldorf
, Germany.
38.
Madison
,
R. D.
,
1949
,
Fan Engineering
,
Buffalo Forge
,
Buffalo, NY
.
39.
Starzmann
,
R.
,
Moisel
,
C.
,
Carolus
,
T.
,
Tease
,
K.
, and
Arlitt
,
R.
,
2011
, “
Assessment Method of Sound Radiated by Cyclically Operating Wells Turbines
,”
Proc. 9th European Wave and Tidal Energy Conference
(EWTEC 2011),
Southampton, UK, September 5–9
.
40.
Vad
,
J.
,
2010
, “
Radial Fluid Migration and Endwall Blockage in Axial Flow Rotors
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
3
), pp.
399
417
.10.1243/09576509JPE832
41.
Suzuki
,
M.
, and
Arakawa
,
C.
,
2001
, “
Numerical Simulation of 3-D Stall Mechanism on Wells Turbine for Wave-Power Generating System
,”
Int. J. Offshore Polar Eng.
,
11
(
4
), pp.
315
320
.
You do not currently have access to this content.