This paper investigates the effects of compressibility and unsteadiness due to the relative blade row motion and their importance in the interaction between hub leakage (purge) and mainstream flows. First, the challenges associated with the blade redesign for low-speed testing are described. The effects of Mach number are then addressed by analyzing the experiments in the low-speed linear cascade equipped with the secondary airflow system and computations performed on the low- and high-speed blade profiles. These results indicate that the compressibility does not significantly affect the interaction between the leakage and mainstream flows despite a number of compromises made during the design of the low-speed blade. This was due to the fact that the leakage–mainstream interaction takes place upstream of the blade throat where the local Mach numbers are still relatively low. The analysis is then extended to the equivalent full-stage unsteady computations. The periodic unsteadiness resulting from the relative motion of the upstream vanes appreciably affected the way in which the leakage flow is injected and the rotor flow field in general. However, the time-average flow field was still found to be dominated by the rotor blade's potential field. For the present test arrangement, the unsteady effects were not very detrimental and caused less than a 10% increase in the losses due to the leakage injection relative to the steady calculations.

References

References
1.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
, pp.
687
696
.10.1115/1.1401026
2.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
2009
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
ASME
Paper No. GT2009-59653.10.1115/GT2009-59653
3.
Wang
,
C. Z.
,
de Jong
,
F.
,
Johnson
,
B. V.
, and
Vashist
T. K.
, 2007, “
Comparison of Flow Characteristics in Axial-Gap Seals for Close- and Wide-Spaced Turbine Stages
,”
ASME
Paper No. GT2007-27909.10.1115/GT2007-27909
4.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Gas Turbine Power
,
92
, pp.
335
341
.10.1115/1.3445358
5.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
,
1991
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
,
114
, pp.
439
445
.10.1115/1.2929162
6.
Bunker
,
R. S.
,
Laskowski
,
G. M.
,
Bailey
,
J. C.
,
Palafox
,
P.
,
Kapetanovic
,
S.
,
Itzel
,
G. M.
,
Sullivan
,
M. A.
, and
Farrell
,
T. R.
,
2009
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part 1: Experimental Measurements
,”
ASME
Paper No. GT2009-59237.10.1115/GT2009-59237
7.
Owen
,
M.
,
2009
, “
Prediction of Ingestion Through Turbine Rim Seals—Part 1: Rotationally Induced Ingress
,”
ASME
Paper No. GT2009-59121.10.1115/GT2009-59121
8.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
, pp.
795
803
.10.1115/1.1456461
9.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
, p.
021005
.10.1115/1.2950053
10.
O’Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2010
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
ASME
Paper No. GT2010-22962.10.1115/GT2010-22962
11.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME
Paper No. GT2006-90838.10.1115/GT2006-90838
12.
de la Rosa Blanco
,
E.
,
Hodson
H. P.
, and
Vazques
,
R.
,
2006
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME
Paper No. GT2006-90767.10.1115/GT2006-90767
13.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
,
2006
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME
Paper No. GT2006-90375.10.1115/GT2006-90375
14.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J.
,
2008
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME
Paper No. GT2008-50286.10.1115/GT2008-50286
15.
Popović
,
I.
, and
Hodson
,
H. P.
,
2010
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded HP Turbine Blades
,”
ASME
Paper No. GT2010-22311.10.1115/GT2010-22311
16.
Schuler
,
P.
,
Kurz
,
W.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
,
2010
, “
The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low-Pressure Turbine
,”
ASME
Paper No. GT2010-22205.10.1115/GT2010-22205
17.
Haselbach
,
F.
, and
Schiffer
,
H. P.
,
2004
, “
Aerothermal Investigations on Turbine Endwalls and Blades (AITEB)
,”
ASME
Paper No. GT2004-53078.10.1115/GT2004-53078
18.
Janke
,
E.
, and
Wolf
,
T.
,
2010
, “
Aerothermal Research for Turbine Components—An Overview of the European AITEB-2 Project
,”
ASME
Paper No. GT2010-23511.10.1115/GT2010-23511
19.
Brear
,
M. J.
,
Hodson
,
H. P.
,
Gonzalez
,
P.
, and
Harvey
,
N. W.
,
2002
, “
Pressure Surface Separations in Low-Pressure Turbines—Part 2: Interactions With the Secondary Flow
,”
ASME J. Turbomach.
,
124
, pp.
393
401
.10.1115/1.1450764
20.
Brown
,
L. E.
,
1972
, “
Axial Flow Compressor and Turbine Loss Coefficients: A Comparison of Several Parameters
,” ASME Paper No. 72-GT-18.
21.
Horlock
,
J. H.
,
1973
,
Axial Flow Turbines
,
Robert E. Krieger Publishing Company
,
New York
.
You do not currently have access to this content.