Improved computational fluid dynamics tools based on Reynolds-averaged Navier–Stokes (RANS) equations have shown that the behavior of simple flow cases can be predicted with a reasonable degree of accuracy. Their predictive capability, however, substantially diminishes whenever major secondary vortices, adverse pressure gradients, and wake-boundary layer interactions are present. Flow through high-pressure (HP) turbine components uniquely incorporates almost all of the above features, interacting with each other and determining the efficiency and performance of the turbine. Thus, the degree of accuracy of predicting the flow through a HP turbine can be viewed as an appropriate benchmark test for evaluating the predictive capability of any RANS-based method. Detailed numerical and experimental investigations of different HP turbines presented in this paper have revealed substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. This paper aims at identifying the quantities whose simulation inaccuracies are pre-eminently responsible for the aforementioned differences. This task requires (a) a meticulous experimental investigation of all individual thermofluid quantities and their interactions resulting in an integral behavior of the turbomachine in terms of efficiency and performance, (b) a detailed numerical investigation using appropriate grid densities based on simulation sensitivity, and (c) steady and transient simulations to ensure their impact on the final numerical results. To perform the above experimental and numerical tasks, two different HP turbines were investigated: (1) a two-stage turbine with moderately compound-leaned stator blades and (2) a three-stage turbine rotor with compound-leaned stator and rotor blades. Both turbines have been thoroughly measured and numerically simulated using RANS and URANS. Detailed interstage radial and circumferential traversing presents a complete flow picture of the second stage. Performance measurements were carried out for design and off-design rotational speeds. For comparison with numerical simulations, the turbines were numerically modeled using a commercially available code. An extensive mesh sensitivity study was performed to achieve a grid-independent accuracy for both steady and transient analysis. Comparison of RANS/URANS results with the experimental ones revealed differences in total pressure for the two-stage turbine of up to 5%. A significantly lower difference of less than 0.2% is observed for the three-stage turbine with specially designed blades to suppress the secondary flow losses. Analyzing the physical background of a RANS-based solver, it was argued that the differences of individual quantities exhibited in the paper were attributed to the deficiencies in dissipation and transition models.

References

References
1.
Schobeiri
,
M.
,
2005
,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer-Verlag
,
Berlin
.
2.
Schobeiri
,
M. T.
,
2012
,
Turbomachinery Flow Physics and Dynamic Performance
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.10.1115/1.2929299
4.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.10.1115/1.3239704
5.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
6.
Gerolymos
,
G.
,
Neubauer
,
J.
,
Sharma
,
V.
, and
Vallet
,
I.
,
2002
, “
Improved Prediction of Turbomachinery Flows Using Near-Wall Reynolds-Stress Model
,”
ASME J. Turbomach.
,
124
, pp.
86
99
.10.1115/1.1426083
7.
Gerolymos
,
G. A.
, and
Vallet
,
I.
,
2007
, “
Robust Implicit Multgrid Reynolds-Stress Model Computation of 3D Turbomachinery Flows
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1212
1227
.10.1115/1.2754320
8.
Dorney
,
D. J.
, and
Davis
,
R. L.
,
1992
, “
Navier–Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
,
114
, pp.
18
26
.10.1115/1.2928033
9.
Schobeiri
,
M. T.
,
Gilarranz
,
J.
, and
Johansen
,
E.
,
1999
, “
Final Report on: Efficiency, Performance, and Interstage Flow Field Measurement of Siemens-Westinghouse HP—Turbine Blade Series 9600 and 5600
,” Technical Report.
10.
Schobeiri
,
M. T.
,
Gillaranz
,
J. L.
, and
Johansen
,
E. S.
,
2000
, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine With 3-D Blades, Design Point and Off-Design Experimental Investigations
,”
Proceedings of ASME Turbo Expo 2000
, Munich, May 8–11,
ASME
Paper No. 2000-GT-484.
11.
Treiber
,
M.
,
Abhari
,
R. S.
, and
Sell
,
M.
,
2002
, “
Flow Physics and Vortex Evolution in Annular Turbine Cascades
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, June 3–6,
ASME
Paper No. GT2002-30540.10.1115/GT2002-30540
12.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2001
, “
Improving The Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part 1 Turbine Design
,”
Proceedings of ASME Turbo Expo 2001
, New Orleans, LA, June 4–7,
ASME
Paper No. 2001-GT-0444.
13.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Brennan
,
G.
, and
Newman
,
D. A.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
Proceedings of ASME Turbo Expo 2002
, Amsterdam, The Netherlands, June 3–6,
ASME
Paper No. GT2002-30337.10.1115/GT2002-30337
14.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
I.
,
Abhari
,
R. S.
, and
Rose
,
N.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric End Walls Part I: Endwall Design and Performance
,”
Proceedings of ASME Turbo Expo 2008
, Orlando, FL, June 8–12,
ASME
Paper No. GT2008-50469.10.1115/GT2008-50469
15.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2009
, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,”
Proceedings of ASME Turbo Expo 2009
, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2009-59169.10.1115/GT2009-59169
16.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
The Performance of a Generic Non-Axisymmetric End Wall in a Single Stage, Rotating Turbine at On and Off-Design Conditions
,”
Proceedings of ASME Turbo Expo 2010
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22006.10.1115/GT2010-22006
17.
Wissink
,
J. G.
,
2003
, “
DNS of Separating Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
,
24
, pp.
626
635
.10.1016/S0142-727X(03)00056-0
18.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Frohlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
, pp.
2143
2156
.10.2514/2.6832
19.
Chibli
,
H.
,
Abdelfattah
,
S.
,
Schobeiri
,
M. T.
, and
Kang
,
C.
,
2009
, “
An Experimental and Numerical Study of the Effects of Flow Incidence Angles on the Performance of a Stator Blade Cascade of a High Pressure Steam Turbine
,” ASME Turbo Expo 2009, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-59131.10.1115/GT2009-59131
20.
Schobeiri
,
M. T.
,
2012
,
Turbomachinery Flow Physics and Dynamic Performance
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
21.
Kline
,
S. J.
, and
McKlintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (ASME)
,
75
, pp.
3
8
.
22.
Ansys, Inc.
,
2009
,
ansys-cfx Release Documentation
,
12.0 ed.
,
Ansys, Inc.
, Canonsburg, PA.
23.
Denton
,
J.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.10.1115/1.2927983
24.
Schobeiri
,
M. T.
, and
Pappu
,
K.
,
1999
, “
Optimization of Trailing Edge Ejection Mixing Losses Downstream of Cooled Turbine Blades: A Theoretical and Experimental Study
,”
ASME J. Fluids Eng.
,
121
, pp.
118
125
.10.1115/1.2821991
25.
Chakka
,
P.
, and
Schobeiri
,
M. T.
,
1999
, “
Modeling of Unsteady Boundary Layer Transition on a Curved Plate Under Periodic Unsteady Flow Condition: Aerodynamic and Heat Transfer Investigations
,”
ASME J. Turbomach.
,
121
, pp.
88
97
.10.1115/1.2841237
26.
Schobeiri
,
M. T.
, and
Chakka
,
P.
,
2002
, “
Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model
,”
Int. J. Heat Mass Transfer
,
45
, pp.
815
829
.10.1016/S0017-9310(01)00190-9
27.
Schobeiri
,
M. T.
, and
Radke
,
R. E.
,
1994
, “
Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate
,”
International Gas Turbine and Aero-Engine Congress and Exposition
,
Hague, The Netherlands
, June 13–16, ASME Paper No. 94-GT-327.
28.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
,
2003
, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis
,”
ASME J. Fluids Eng.
,
125
, pp.
251
266
.10.1115/1.1537253
29.
Wright
,
L.
, and
Schobeiri
,
M. T.
,
1999
, “
The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface
,”
ASME J. Heat Transfer
,
120
, pp.
22
33
.10.1115/1.2825954
30.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D.
,
2005
, “
On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,”
ASME J. Fluids Eng.
,
127
, pp.
503
513
.10.1115/1.1905646
31.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
,
2004
, “
Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
663
676
.10.1115/1.1791646
32.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D.
,
2005
, “
Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-Attachment Along the Suction Surface of a Low Pressure Turbine Blade
,”
ASME
Paper No. GT2005-68600.10.1115/GT2005-68600
33.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D.
,
2005
, “
Intermittent Behavior of the Separated Boundary Layer Along the Suction Surface of a Low Pressure Turbine Blade Under Periodic Unsteady Flow Conditions
,”
ASME
Paper No. GT2005-68603.10.1115/GT2005-68603
34.
Öztürk
,
B.
, and
Schobeiri
,
M. T.
,
2006
, “
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-Attachment Over the Separation Bubble Along the Suction Surface of a Low Pressure Turbine Blade
,”
ASME
Paper No. GT2006-91293.10.1115/GT2006-91293
35.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.1993-2906
36.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
37.
Schobeiri
,
M. T.
,
2011
,
Fluid Mechanics for Engineers, A Graduate Text Book
,
Springer-Verlag
,
Berlin
.
38.
Menter
,
F.
,
2008
, private communication.
39.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2005
, “
Transition Modeling for General CFD Applications in Aeronautics
,”
AIAA
Paper No. 2005-522.10.2514/6.2005-522
40.
Bradshaw
,
P.
, and
Perot
,
J. B.
,
1993
, “
A Note on Turbulent Energy Dissipation in the Viscous Wall Region
,”
Phys. Fluids A
,
5
, p.
3305
.10.1063/1.858691
41.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
42.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
43.
Launder
,
B. E.
,
Reece
,
G.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.10.1017/S0022112075001814
44.
Hanjalic
,
K.
, and
Launder
,
B. E.
,
1972
, “
A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows
,”
J. Fluid Mech.
52
(
4
), pp.
609
638
.10.1017/S002211207200268X
45.
Rodi
,
W.
, and
Mansour
,
N. N.
,
1993
, “
Low Reynolds Number k-ε Modeling With the Aid of Direct Simulation Data
,”
J. Fluid Mech.
,
250
, pp.
509
529
.10.1017/S0022112093001545
46.
Kolmogorov
,
A. N.
,
1941
, “
Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number
,”
Dokl. Akad. Nauk SSSR
,
30
, pp.
299
303
.
47.
Wilcox
,
D.
,
1993
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
48.
Schobeiri
,
M. T.
, and
Handler
,
R.
,
2012
, “
Boundary Layer Transition, Separation and Re-Attachment Subject to Periodic Unsteady Inlet Flow Condition, A Combined Experimental and DNS-Study
,” NSF (submitted).
49.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
,
1988
, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
194
, pp.
15
44
.10.1017/S0022112088002885
50.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
You do not currently have access to this content.