This paper presents isoenergetic temperature and steady-state film-cooled heat transfer coefficient measurements on the pressure surface of a modern, highly cambered transonic airfoil. A single passage model simulated the idealized two-dimensional flow path between blades in a modern transonic turbine. This set up offered a simpler construction than a linear cascade but produced an equivalent flow condition. Furthermore, this model allowed the use of steady-state, constant surface heat fluxes. We used wide-band thermochromic liquid crystals (TLCs) viewed through a novel miniature periscope system to perform high-accuracy (±0.2 °C) thermography. The peak Mach number along the pressure surface was 1.5, and maximum turbulence intensity was 30%. We used air and carbon dioxide as injectant to simulate the density ratios characteristic of the film cooling problem. We found significant differences between isoenergetic and recovery temperature distributions with a strongly accelerated mainstream and detached coolant jets. Our heat transfer data showed some general similarities with lower-speed data immediately downstream of injection; however, we also observed significant heat transfer attenuation far downstream at high blowing conditions. Our measurements suggested that the momentum ratio was the most appropriate variable to parameterize the effect of injectant density once jet lift-off occurred. We noted several nonintuitive results in our turbulence effect studies. First, we found that increased mainstream turbulence can be overwhelmed by the local augmentation of coolant injection. Second, we observed complex interactions between turbulence level, coolant density, and blowing rate with an accelerating mainstream.

References

References
1.
Bunker
,
R.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
2.
Eckert
,
E.
,
1984
, “
Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades
,”
J. Eng. Gas Turbines Power
,
106
, pp.
206
213
.10.1115/1.3239536
3.
Abhari
,
R.
, and
Epstein
,
A.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
J. Turbomach.
,
116
(
1
), pp.
63
70
.10.1115/1.2928279
4.
Mukerji
,
D.
,
Eaton
,
J.
,
Moffat
,
R.
, and
Elkins
,
C.
,
1999
, “
A 2-D Numerical Study of the Heat-Island Effect for Button-Type Heat Flux Gages
,”
Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference
, Paper No. AJTE99/6186.
5.
Drost
,
U.
, and
Bölcs
,
A.
,
1999
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distribution on a Gas Turbine Airfoil
,”
J. Turbomach.
,
121
(
2
), pp.
233
242
.10.1115/1.2841306
6.
Vogel
,
G.
,
Graf
,
A.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2003
, “
A Novel Transient Heater-Foil Technique for Liquid Crystal Experiments on Film-Cooled Surfaces
,”
J. Turbomach.
,
125
(
3
), pp.
529
537
.10.1115/1.1578501
7.
Kodzwa
,
P.
, and
Eaton
,
J.
,
2010
, “
Heat Transfer Coefficient Measurements on the Pressure Surface of a Transonic Airfoil
,”
Exp. Fluids
,
48
(
2
), pp.
475
486
.10.1007/s00348-009-0721-7
8.
Kodzwa
,
P.
,
Elkins
,
C.
,
Mukerji
,
D.
, and
Eaton
,
J.
,
2007
, “
Thermochromic Liquid Crystal Temperature Measurements Through a Borescope Imaging System
,”
Exp. Fluids
,
43
(
4
), pp.
475
486
.10.1007/s00348-007-0310-6
9.
Vicharelli
,
A.
, and
Eaton
,
J.
,
2006
, “
Turbulence Measurements in a Transonic Two-Passage Turbine Cascade
,”
Exp. Fluids
,
40
(
6
), pp.
897
917
.10.1007/s00348-006-0127-8
10.
Haldeman
,
C.
,
Dunn
,
M.
,
Barter
,
J.
,
Green
,
B.
, and
Bergholz
,
R.
,
2005
, “
Aerodynamic and Heat-Flux Measurements With Predictions on a Modern One and One-Half State High Pressure Transonic Turbine
,”
J. Turbomach.
,
127
(
3
), pp.
522
531
.10.1115/1.1861916
11.
Teekaram
,
A.
,
Forth
,
C.
, and
Jones
,
T.
,
1989
, “
The Use of Foreign Gas to Simulate the Effect of Density Ratios in Film Cooling
,”
J. Turbomach.
,
111
(
1
), pp.
57
62
.10.1115/1.3262237
12.
Kodzwa
,
P.
, and
Eaton
,
J.
,
2010
, “
Film Effectiveness Measurements on the Pressure Surface of a Transonic Airfoil
,”
J. Propul. Power
,
26
(
4
), pp.
837
847
.10.2514/1.46668
13.
Kodzwa
,
P.
,
Laskowski
,
G.
,
Vicharelli
,
A.
,
Medic
,
G.
,
Elkins
,
C.
,
Eaton
,
J.
, and
Durbin
,
P.
,
2009
, “
Evaluation of Alternatives for 2-D Linear Cascade Facilities
,”
J. Turbomach.
,
131
(
3
), p.
031001
.10.1115/1.2985073
14.
Bogard
,
D.
, and
Thole
,
K.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
15.
Narashima
,
R.
, and
Sreenivasan
,
K.
,
1979
, “
Relaminarization of Fluid Flows
,”
Adv. Appl. Mech.
,
19
, pp.
221
309
.10.1016/S0065-2156(08)70311-9
16.
Roberts
,
G.
, and
East
,
R.
,
1996
, “
Liquid Crystal Thermography for Heat Transfer Measurement in Hypersonic Flows: A Review
,”
J. Spacecr. Rockets
,
33
(
6
), pp.
761
768
.10.2514/3.26835
17.
Giel
,
P.
,
Boyle
,
R.
, and
Bunker
,
R.
,
2004
, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
126
(
1
), pp.
110
121
.10.1115/1.1643383
18.
Tani
,
I.
,
Hama
,
R.
, and
Mituisi
,
S.
,
1940
, “
On the Permissible Roughness in the Laminar Boundary Layer
,”
Rep. Aeronaut. Res. Inst., Tokyo Imperial Univ., (Jpn)
,
15
(
13
), pp.
1
10
.
19.
Fage
,
A.
, and
Preston
,
J.
,
1941
, “
On the Transition From Laminar to Turbulent Flow in the Boundary Layer
,”
Proc. R. Soc. London, Ser. A
,
178
, pp.
201
227
.10.1098/rspa.1941.0053
20.
Kodzwa
,
P.
, and
Eaton
,
J.
,
2005
, “
Measurements of Film Cooling Performance in a Transonic Single Passage Model
,” Department of Mechanical Engineering, Stanford University, Technical Report No. TF-93, http://www.stanford.edu/group/fpc/Publications/TF.html
21.
Kodzwa
,
P.
, and
Eaton
,
J.
,
2007
, “
Angular Effects on Thermochromic Liquid Crystal Thermography
,”
Exp. Fluids
,
43
(
6
), pp.
929
937
.10.1007/s00348-007-0363-6
22.
Buck
,
F.
, and
Prakash
,
C.
,
1995
, “
Design and Evaluation of a Single Passage Test Model to Obtain Turbine Airfoil Film Cooling Effectiveness Data
,” ASME Paper No. 95-GT-19.
23.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
24.
Moffat
,
R.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
25.
Dorrance
,
W.
,
1962
,
Viscous Hypersonic Flow
,
1st
ed.,
McGraw-Hill
,
New York.
26.
Gauntner
,
J.
,
1977
, “
Effects of Film Injection Angle on Turbine Vane Cooling
,” NASA Technical Paper No. 1095.
27.
Ramsey
,
J.
, and
Goldstein
,
R.
,
1971
, “
Interaction of a Heated Jet With a Deflecting Stream
,”
ASME J. Heat Transfer
,
93
(
4
), pp.
365
372
.10.1115/1.3449832
28.
Lee
,
S.
,
Lee
,
S.
, and
Ro
,
S.
,
1994
, “
Experimental Study on the Flow Characteristics of Streamwise Inclined Jets in Crossflow on Flat Plate
,”
ASME J. Turbomach.
,
116
, pp.
97
105
.10.1115/1.2928283
29.
Goldstein
,
R.
, and
Taylor
,
J.
,
1982
, “
Mass Transfer in the Neighborhood of Jets Entering a Crossflow
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
715
721
.10.1115/1.3245190
30.
Ekkad
,
S.
,
Zapata
,
D.
, and
Han
,
J.
,
1997
. “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.10.1115/1.2841162
31.
Afejuku
,
W.
,
Hay
,
N.
, and
Lampard
,
D.
,
1983
, “
Measured Coolant Distributions Downstream of Single and Double Rows of Film Cooling Holes
,”
ASME J. Eng. Power
,
105
(
1
), pp.
172
177
.10.1115/1.3227379
32.
Cho
,
H.
, and
Goldstein
,
R.
,
1995
, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part I—Within Holes and on the Back Surface
,”
ASME J. Turbomach.
,
117
(
3
), pp.
440
450
.10.1115/1.2835680
33.
Bons
,
J.
,
MacArthur
,
C.
, and
Rivir
,
R.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.10.1115/1.2840939
34.
Pietrzyk
,
J.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1989
, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
111
(
2
), pp.
139
145
.10.1115/1.3262248
35.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
749
757
.10.1115/1.1387245
36.
Goldstein
,
R.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
4
), pp.
222
230
.10.1115/1.1344905
37.
Ekkad
,
S.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C.
,
1997
, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
,
119
(
3
), pp.
594
600
.10.1115/1.2841163
38.
Ames
,
F.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
(
4
), pp.
777
784
.10.1115/1.2841789
39.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Intl. J. Heat Mass Transfer
,
17
(
5
), pp. 595–607.10.1016/0017-9310(74)90007-6
40.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.10.1115/1.2841752
You do not currently have access to this content.