Future engine requirements, including high-altitude flight of unmanned air vehicles as well as an impetus to reduce engine cost and weight, are challenging the current state of the art in low-pressure-turbine airfoil design. These new requirements present low-Reynolds number challenges as well as the need for high-performance, high-lift design concepts. Here, we report on an effort to expand the relatively well established aerodynamic design space for low-pressure turbine airfoils through the application of recent developments in transition modeling to airfoil design. Analytical and experimental midspan performance data and predicted loadings are presented for four high-lift airfoil designs based on the Pack B velocity triangles. The new designs represent a systematic expansion of low-pressure turbine airfoil design space through the application of high-lift design concepts for front- and aft-loaded airfoils. All four designs performed as predicted across a range of operationally representative Reynolds numbers. Full-span loss data for the new high-lift designs reveal increased endwall losses, which, with the application of nonaxisymmetric endwall contouring, have been substantially reduced. Taken holistically, the results presented here demonstrate that accurate transition modeling provides a reliable method to develop optimized, very high-lift airfoil designs. However, further improvements in endwall-loss mitigation technologies are required to enable the implementation of the very high-lift technology presented here in engine systems.

References

References
1.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
, and
Howell
,
R. J.
,
1997
, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
, pp.
531
538
.10.1115/1.2841154
2.
Hourmouziadis
,
J.
,
1989
, “
Aerodynamic Design of Low Pressure Turbines
,” AGARD Lecture Series 167, Blading Design for Axial Turbomachines, Paper No. 8.
3.
Hoheisel
,
H.
,
Kiock
,
R.
,
Lichtfuss
,
H. J.
, and
Fottner
,
L.
,
1987
, “
Influence of Free-Stream Turbulence and Blade Pressure Gradient on Boundary Layer and Loss Behaviour of Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
210
219
.10.1115/1.3262087
4.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1996
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,” ASME Paper No. 96-GT-486.
5.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Schiffer
,
H.-P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
,
2001
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines—The Implementation of High Lift and Ultra High Lift Concepts
,” ASME Paper No. 2001-GT-0441.
6.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2004
, “
High Lift and Aft Loaded Profiles for Low Pressure Turbines
,”
ASME J. Turbomach.
,
123
(
1
), pp.
181
188
.10.1115/1.1350409
7.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2004
, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.10.1115/1.1773850
8.
Zhang
,
X.-F.
, and
Hodson
,
H. P.
,
2004
, “
The Combined Effects of Surface Trips and Unsteady Wakes on Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade
,”
ASME
Paper No. GT2004-53081.10.1115/GT2004-53081
9.
Vera
,
M.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2004
, “
The Effects of a Trip Wire and Unsteadiness on a High Speed Highly Loaded Low-Pressure Turbine Blade
,”
ASME
Paper No. GT2004-53822.10.1115/GT2004-53822
10.
Zhang
,
X.-F.
,
Vera
,
M.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
,
2005
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation
,”
ASME
Paper No. GT2005-68892.10.1115/GT2005-68892
11.
Vera
,
M.
,
Zhang
,
X.-F.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
,
2005
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME
Paper No. GT2005-68893.10.1115/GT2005-68893
12.
Ladwig
,
M.
, and
Fottner
,
L.
,
1993
, “
Experimental Investigations of the Influence of Incoming Wakes on the Losses of a Linear Turbine Cascade
,” ASME Paper No. 93-GT-394.
13.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.10.1115/1.2835631
14.
Brunner
,
S.
,
Fottner
,
L.
, and
Schiffer
,
H.-P.
,
2000
, “
Comparison of Two Highly Loaded Low Pressure Turbine Cascades Under the Influence of Wake-Induced Transition
,” ASME Paper No. 2000-GT-268.
15.
Stadtmuller
,
P.
, and
Fottner
,
L.
,
2001
, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade
,” ASME Paper No. 2001-GT-0311.
16.
Bons
,
J. P.
,
Hansen
,
L. C.
,
Clark
,
J. P.
,
Koch
,
P. J.
, and
Sondergaard
,
R.
,
2005
, “
Designing Low-Pressure Turbine Blades With Integrated Flow Control
,”
ASME
Paper No. GT2005-68962.10.1115/GT2005-68962
17.
Houtermans
,
R.
,
Coton
,
T.
, and
Arts
,
T.
,
2004
, “
Aerodynamic Performance of a Very High Lift LP Turbine Blade With Emphasis on Separation Prediction
,”
ASME J. Turbomach.
,
126
(
3
), pp.
406
413
.10.1115/1.1748416
18.
Torre
,
D.
,
Vazquez
,
R.
,
de la Rosa Blanco
,
E.
, and
Hodson
,
H.
,
2006
, “
A New Alternative for Reduction of Secondary Flows in Low Pressure Turbines
,”
ASME
Paper No. GT2006-91002.10.1115/GT2006-91002
19.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
,
2001
The Application of Ultra-High Lift Blading in the BR715 LP Turbine
,” ASME Paper No. 2001-GT-0436.
20.
Gier
,
J.
, and
Ardey
,
S.
,
2001
, “
On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine
,” ASME Paper No. 2001-GT-0197.
21.
Murawski
,
C. G.
,
Sondergard
,
R.
,
Rivir
,
R. B.
,
Simon
,
T. W.
, and
Vafai
,
K.
,
1997
, “
Experimental Study of the Unsteady Aerodynamics in a Linear Cascade With Low Reynolds Number Low Pressure Turbine Blades
,” ASME Paper No. 97-GT-95.
22.
Lake
,
J. P.
,
King
,
P.
, and
Rivir
,
R. B.
,
1999
, “
Effects of Turbulence and Solidity on the Boundary Layer Development in a Low-Pressure Turbine
,”
AIAA
Paper No. 99-0242.10.2514/6.1999-242
23.
Dorney
,
D. J.
,
Lake
,
J. P.
,
King
,
P. I.
, and
Ashpis
,
D. E.
,
2000
, “
Experimental and Numerical Investigations of Losses in Low-Pressure Turbine Blade Rows
,”
AIAA
Paper No. 2000-0737.10.2514/6.2000-737
24.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2007
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part 1: Steady Flow Measurements
,”
ASME
Paper No. GT2007-27347.10.1115/GT2007-27347
25.
Mahallati
,
A.
, and
Sjolander
,
S. A.
,
2007
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part 2: Blade-Wake Interaction
,”
ASME
Paper No. GT2007-27348.10.1115/GT2007-27348
26.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
,
2000
, “
Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves
,”
AIAA
Paper No. 00-0738.10.2514/6.2000-738
27.
Volino
,
R. J.
,
2003
, “
Passive Flow Control of Low-Pressure Turbine Airfoils
,”
ASME
Paper No. GT2003-38728.10.1115/GT2003-38728
28.
McAuliffe
,
B.
,
2003
, “
An Experimental Study of Flow Control Using Blowing for a Low-Pressure Turbine Airfoil
,” M.A. Sc. (Aero.) thesis, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada.
29.
McAuliffe
,
B. R.
, and
Sjolander
,
S. A.
,
2004
, “
Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
560
569
.10.1115/1.1791291
30.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2001
, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
,
123
(
2
), pp.
198
206
.10.1115/1.1350410
31.
Sondergaard
,
R.
,
Bons
,
J. P.
,
Sucher
,
M.
, and
Rivir
,
R. B.
,
2002
, “
Reducing Low-Pressure Turbine Stage Blade Count Using Vortex Generator Jets
,”
ASME
Paper No. GT2002-30602.10.1115/GT2002-30602
32.
Volino
,
R. J.
,
2003
, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
,”
ASME J. Turbomach.
,
125
(
4
), pp.
765
777
.10.1115/1.1626686
33.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579.10.1115/GT2007-27579
34.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
, and
Grover
,
E. A.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537.10.1115/GT2007-27537
35.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
, and
Grover
,
E. A.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part II—Measured Profile and Secondary Losses at Off-Design Incidence
,”
ASME
Paper No. GT2007-27538.10.1115/GT2007-27538
36.
Popovic
,
I.
,
Zhu
,
J.
,
Dai
,
W.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
, and
Grover
,
E. A.
,
2006
, “
Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow
,”
ASME
Paper No. GT2006-91271.10.1115/GT2006-91271
37.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery: Part I—A Review and New Model Development
,”
ASME J. Turbomach.
,
129
(
1
), pp.
1
13
.10.1115/1.2366513
38.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Rice
,
M. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery: Part II—Model Validation and Benchmarking
,”
ASME J. Turbomach.
,
129
(
1
), pp.
14
22
.10.1115/1.2366528
39.
Ni
,
R. H.
,
1982
, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
(
11
), pp.
1565
1571
.10.2514/3.51220
40.
Ni
,
R. H.
, and
Bogoian
,
J. C.
,
1989
, “
Prediction of 3-D Multistage Turbine Flowfield Using a Multiple-Grid Euler Solver
,”
AIAA
Paper No. 89-0203.10.2514/6.1989-203
41.
Binder
,
A.
,
Schröder
,
T. H.
, and
Hourmouziadis
,
J.
,
1988
, “
Turbulence Measurements in a Multistage Low-Pressure Turbine
,” ASME Paper No. 88-GT-79.
42.
Popovic
,
I.
,
2005
, “
Measured Steady and Unsteady Aerodynamic Performance of a Family of Three Highly-Loaded Low-Pressure Turbine Cascades
,” M.A. Sc. (Aero.) thesis, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada.
You do not currently have access to this content.