Here, we report on the application of nonaxisymmetric endwall contouring to mitigate the endwall losses of one conventional and two high-lift low-pressure turbine airfoil designs. The design methodology presented combines a gradient-based optimization algorithm with a three-dimensional computational fluid dynamics (CFD) flow solver to systematically vary a free-form parameterization of the endwall. The ability of the CFD solver employed in this work to predict endwall loss modifications resulting from nonaxisymmetric contouring is demonstrated with previously published data. Based on the validated trend accuracy of the solver for predicting the effects of endwall contouring, the magnitude of predicted viscous losses forms the objective function for the endwall design methodology. This system has subsequently been employed to optimize contours for the conventional-lift Pack B and high-lift Pack D-F and Pack D-A low-pressure turbine airfoil designs. Comparisons between the predicted and measured loss benefits associated with the contouring for Pack D-F design are shown to be in reasonable agreement. Additionally, the predictions and data demonstrate that the Pack D-F endwall contour is effective at reducing losses primarily associated with the passage vortex. However, some deficiencies in predictive capabilities demonstrated here highlight the need for a better understanding of the physics of endwall loss-generation and improved predictive capabilities.

References

1.
Sjolander
,
S. A.
,
1975
, “
The Endwall Boundary Layer in an Annular Cascade of Turbine Nozzle Guide Vanes
,” Carleton University, Dept. of Mech. and Aeron. Engrg., Ottawa, Canada, Report No. TR ME/A 75-4.
2.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1976
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
3.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Power
,
107
, pp.
248
252
.10.1115/1.3239704
4.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.10.1115/1.3262089
5.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
,
2001
, “
The Application of Ultra-High Lift Blading in the BR715 LP Turbine
,” ASME Paper No. 2001-GT-0436.
6.
Devenport
,
W. J.
, and
Simpson
,
R. L.
,
1990
, “
Time-Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
,
210
, pp.
23
55
.10.1017/S0022112090001215
7.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2001
, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,” ASME Paper No. 2001-GT-0404.
8.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2004
, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,”
ASME
Paper No. GT2004-53964. 10.1115/GT2004-53964
9.
Chung
,
J. T.
, and
Simon
,
T. W.
,
1993
, “
Effectiveness of the Gas Turbine Endwall Fences in Secondary Flow Control at Elevated Free Stream Turbulence Levels
,” ASME Paper No. 93-GT-51.
10.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
, pp.
651
658
.10.1115/1.1311286
11.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J. C.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
, pp.
278
285
.10.1115/1.555445
12.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
122
, pp.
286
293
.10.1115/1.555446
13.
Yan
,
J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P. J.
,
1999
, “
Secondary Flow Reduction in a Nozzle Guide Vane by Non-Axisymmetric End-Wall Contouring
,” ASME Paper No. 99-GT-339.
14.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls—Part I: Turbine Design
,” ASME Paper No. 2001-GT-0444.
15.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls—Part II: Experimental Validation
,” ASME Paper No. 2001-GT-0505.
16.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. A.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337. 10.1115/GT2002-30337
17.
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Rose
,
M. G.
,
Harvey
,
N. W.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
ASME
Paper No. GT2002-30339. 10.1115/GT2002-30339
18.
Torre
,
D.
,
Vazquez
,
R.
,
de la Rosa Blanco
,
E.
, and
Hodson
,
H. P.
,
2006
, “
A New Alternative For the Reduction of Secondary Flows in Low Pressure Turbines
,”
ASME
Paper No. GT2006-91002. 10.1115/GT2006-91002
19.
Saha
,
A. K.
,
Mahmood
,
G. I.
, and
Acharya
,
S.
,
2006
, “
The Role of Leading-Edge Contouring on End-Wall Flow and Heat Transfer: Computations and Experiments
,”
ASME
Paper No. GT2006-90390. 10.1115/GT2006-90390
20.
Ingram
,
G.
,
Gregory-Smith
,
D. G.
, and
Harvey
,
N. W.
,
2004
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME
Paper No. GT2004-53589. 10.1115/GT2004-53589
21.
Nagel
,
M. G.
, and
Baier
,
R. D.
,
2003
, “
Experimentally Verified Numerical Optimization of a 3D-Parameterized Turbine Vane With Non-Axisymmetric End Walls
,”
ASME
Paper No. GT2003-38624. 10.1115/GT2003-38624
22.
Popovic
,
I.
, and
Sjolander
,
S. A.
,
2004
, private communication.
23.
Popovic
, I
.
,
Zhu
,
J.
,
Dai
,
W.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
, and
Grover
,
E. A.
,
2006
, “
Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow
,”
ASME
Paper No. GT2006-91271. 10.1115/GT2006-91271
24.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Rice
,
M. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery—Part II: Model Validation and Benchmarking
,”
ASME J. Turbomach.
,
129
, pp.
14
22
.10.1115/1.2366528
25.
Zoric
,
T.
,
Popovic
, I
.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
, and
Grover
,
E. A.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils—Part I: Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537. 10.1115/GT2007-27537
26.
Zoric
,
T.
, and
Sjolander
,
S. A.
,
2004
, private communication.
27.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.10.1115/1.2835631
28.
Ni
,
R. H.
,
1982
, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
(
11
), pp.
1565
1571
.10.2514/3.51220
29.
Ni
,
R. H.
, and
Bogoian
,
J. C.
,
1989
, “
Prediction of 3-D Multistage Turbine Flowfield Using a Multiple-Grid Euler Solver
,”
AIAA
Paper No. 89-0203. 10.2514/6.1989-203
30.
Davis
,
R. L.
,
Shang
,
T.
,
Buteau
,
J.
, and
Ni
,
R. H.
,
1996
, “
Prediction of 3-D Unsteady Flow in Multi-Stage Turbomachinery Using an Implicit Dual Time-Step Approach
,”
AIAA
Paper No. 96-2565. 10.2514/6.1996-2565
31.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Canada, CA
.
32.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin-Layer Approximations and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. 78-257. 10.2514/6.1978-257
33.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
, pp.
1
13
.10.1115/1.2366513
34.
Becz
,
S.
, and
Langston
,
L.
,
2003
, private communication.
35.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer—Part I: Temporal Behavior
,”
ASME J. Turbomach.
,
128
, pp.
747
754
.10.1115/1.2185676
You do not currently have access to this content.