A numerical study is performed to investigate the deposition of Syngas ash in the leading edge region of a turbine vane. The leading edge of the vane is modeled as a symmetric semicylinder with a flat afterbody. Three rows of coolant holes located at stagnation and at ±21.3 deg from stagnation are simulated at blowing ratios of 0.5, 1.0, 1.5, and 2.0. Large eddy simulation (LES) is used to model the flow field of the coolant jet-mainstream interaction and Syngas ash particles are modeled using a discrete particle method. The capture efficiency for eight different ash compositions of particle sizes 5 and 10 microns are investigated. Under the conditions of the current simulations, both ash particles have Stokes numbers less than unity and hence are strongly affected by the flow and thermal field generated by the coolant interaction with the mainstream. Because of this, the coolant jets at stagnation are quite successful in pushing the particles away from the surface and minimizing deposition in the stagnation region. Among all of the ash samples, the ND ash sample shows the highest capture efficiency due to its low softening temperature. For the 5 micron particles, when the blowing ratio increases from 1.5 to 2.0, the percentage of the capture efficiency increases as more numbers of particles are transported to the surface by strong mainstream entrainment by the coolant jets. The deposition results are also estimated using the discrete random walk (DRW) model and are compared to that obtained from the LES calculations. For both particle sizes, the DRW model under-predicts the capture efficiency when compared to the LES calculations and the difference increases with the increasing blowing ratio and decreases with increasing particle size.

References

References
1.
Wenglarz
,
R. D.
,
1985
, “
Deposition, Erosion and Corrosion Protection for Coal-Fired Gas Turbine
,” ASME Paper No. 85-IGTI-61.
2.
Tabakoff
,
W.
,
1991
, “
Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines
,”
J. Propul. Power
,
7
(
5
), pp.
805
813
.10.2514/3.23395
3.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T.
,
2005
, “
High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
ASME
Paper No. GT2005-68479.10.1115/GT2005-68479
4.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Surface Roughness on Film Cooling
,” ASME Paper No. 95-GT-299.
5.
Bunker
,
R.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,” ASME Paper No. 2000-GT-244.
6.
Bons
,
J. P.
,
Taylor
,
R.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
, pp.
739
748
.10.1115/1.1400115
7.
Menguturk
,
M.
, and
Sverdrup
,
E. F.
,
1982
, “
A Theory for Fine Particle Deposition in Two-Dimensional Boundary Layer Flows and Application to Gas Turbines
,”
ASME J. Eng. Power
,
104
, pp.
69
76
.10.1115/1.3227268
8.
Ahluwalia
,
R. K.
,
Im
,
K. H.
, and
Wenglarz
,
R. A.
,
1989
, “
Flyash Adhesion in Simulated Coal-Fired Gas Turbine Environment
,”
ASME J. Eng. Gas Turbines Power
,
111
, pp.
672
678
.10.1115/1.3240311
9.
Stringer
,
J.
, and
Drenker
,
S.
,
1981
, “
Turbine Erosion Problems and Hot Gas Clean-Up Requirements for PFB Combustion
,”
Proc. Am. Power Conf.
,
43
, p.
943
.
10.
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D.
,
Bons
,
J. P.
, and
Fletcher
,
T.
,
2006
, “
Evolution of Surface Deposits on a High Pressure Turbine Blade—Part I: Physical Characteristics
,”
ASME
Paper No. GT2006-91246.10.1115/GT2006-91246
11.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T.
,
2007
, “
Effects of Particle Size, Gas Temperature, and Metal Temperature on High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,”
ASME
Paper No. GT2007-27531.10.1115/GT2007-27531
12.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2008
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME
Paper No. GT2008-50901.10.1115/GT2008-50901
13.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
14.
Shah
,
A.
, and
Tafti
,
D.
,
2007
, “
Transport of Particulates in an Internal Cooling Ribbed Duct
,”
ASME J. Turbomach.
,
129
(
4
), pp.
816
825
.10.1115/1.2720509
15.
Rozati
,
A.
,
Tafti
,
D.
, and
Sreedharan
,
S.
,
2011
, “
Effect of Syngas Ash Particle Size on Deposition and Erosion of a Film Cooled Leading Edge
,”
ASME J. Turbomach.
,
133
(
1
), p.
011010
.10.1115/1.4000492
16.
Sreedharan
,
S. S.
, and
Tafti
,
D.
,
2009
, “
Effect of Blowing Ratio on Syngas Flyash Particle Deposition on a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations
,”
ASME
Paper No. GT2009-59326.10.1115/GT2009-59326
17.
Sreedharan
,
S. S.
, and
Tafti
,
D.
,
2010
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
(submitted).
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.10.1063/1.857955
19.
Moin
,
P.
,
Squires
,
K.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
, pp.
2746
2757
.10.1063/1.858164
20.
Shah
,
A.
,
2005
, “
Development and Application of a Dispersed Two-Phase Flow Capability in a General Multi-Block Navier–Stokes Solver
,” Master's thesis, Virginia Tech, Blacksburg, VA.
21.
Klienstreuer
,
C.
,
2003
,
Two Phase Flow: Theory and Applications
,
Taylor & Francis
,
London
.
22.
Graham
,
D. I.
, and
James
,
P. W.
,
1995
, “
Turbulent Dispersion of Particles Using Eddy Interaction Models
,”
Int. J. Multiphase Flow
,
22
(
1
), pp.
157
175
.10.1016/0301-9322(95)00061-5
23.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.10.2514/3.62687
24.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beer
,
J. M.
, and
Sarofim
,
A. F.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
, pp.
327
334
.10.1016/0360-1285(90)90042-2
25.
Senior
,
S. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
,
9
, pp.
277
283
.10.1021/ef00050a010
26.
Vargas
,
S.
,
2001
, “
Straw and Coal Ash Rheology
,” PhD thesis, Dept. of Chemical Eng., Technical University of Denmark, Lyngby, Denmark, pp.
53
61
.
27.
Yin
,
C.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
1998
, “
Predicting Coal Ash Fusion Temperature With a Back-Propagation Neural Network Model
,”
Fuel
,
77
(
17
), pp.
1777
1782
.10.1016/S0016-2361(98)00077-5
28.
Ledesma
,
M.
, and
Isaacs
,
L. L.
,
1990
, “
Thermal Properties of Coal Ash
,”
MRS Proceedings
,
178
, p.
35
.10.1557/PROC-178-35
29.
Mbabazi
,
J. G.
,
Sheer
,
T. J.
, and
Shandu
,
R.
,
2004
, “
A Model to Predict Erosion on Mild Steel Surfaces Impacted by Boiler Fly Ash Particles
,”
Wear
,
257
, pp.
612
624
.10.1016/j.wear.2004.03.007
30.
Li
,
H.
,
Yoshihiko
,
N.
,
Dong
,
Z.
, and
Zhang
,
H.
,
2006
, “
Application of the Facts—Age to Predict the Ash Melting Behavior in Reducing Conditions
,”
Chin. J. Chem. Eng.
,
14
(
6
), pp.
784
789
.10.1016/S1004-9541(07)60012-3
31.
Tafti
,
D.
,
2001
, “
Genidlest—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of the ASME Fluids Engineering Division
, Vol.
256
, pp.
347
356
.
You do not currently have access to this content.