This paper draws upon the theoretical basis and applicability of the three-dimensional (3-D) reduced-order spectral-based “meshless” energy technology presented in a companion paper (McGee et al., 2013, “A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part I: Theoretical Basis,” ASME J. Turbomach., to be published) to predict free and forced responses of bladed disks comprised of randomly mistuned blades integrally attached to a flexible disk. The 3-D reduced-order spectral-based model employed is an alternative choice in the computational modeling landscape of bladed disks, such as conventionally-used finite element methods and component mode synthesis techniques, and even emerging element-free Hamiltonian–Galerkin, Petrov–Galerkin, boundary integral, and kernel-particle methods. This is because continuum-based modeling of a full disk annulus of mistuned blades is, at present, a steep task using these latter approaches for modal-type mistuning and/or rogue blade failure analysis. Hence, a considerably simplified and idealized bladed disk of 20 randomly mistuned blades mounted to a flexible disk was created and modeled not only to analyze its free and forced 3-D responses, but also to compare the predictive capability of the present reduced-order spectral-based “meshless” technology to general-purpose finite element procedures widely-used in industry practice. To benchmark future development of reduced-order technologies of turbomachinery mechanics analysts may use the present 3-D findings of the idealized 20-bladed disk as a new standard test model. Application of the 3-D reduced-order spectral-based “meshless” technology to an industry integrally-bladed rotor, having all of its blades modally mistuned, is also offered, where reasonably sufficient upper-bounds on the exact free and forced 3-D responses are predicted. These predictions expound new solutions of 3-D vibration effects of modal mistuning strength and pattern, interblade mechanical coupling, and localized modes on the free and forced response amplitudes.

References

References
1.
Ewins
,
D. J.
,
1988
, “
Structural Dynamic Characteristics of Bladed Assemblies
,”
ALGOR Manual on Aeroelasticity in Axial-Flow Turbomachines
, Vol. 2,
Specialized Printing Service Limited
,
Loughton, UK
, pp.
15-1
15-37
.
2.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,” ASME IGTI Scholar Award Paper No. 97-GT-533.
3.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
4.
Whitehead
,
D. S.
,
1998
, “
The Maximum Factor by Which Forced Vibration Blades Can Increase Due to Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
120
, pp.
115
119
.10.1115/1.2818061
5.
Ewins
,
D. J.
,
1973
, “
Vibration Characteristics of Bladed Disk Assemblies
,”
J. Mech. Eng. Sci.
,
15
(
3
), pp.
165
186
.10.1243/JMES_JOUR_1973_015_032_02
6.
Kaza
,
K. R. V.
, and
Kielb
,
R. E.
,
1982
, “
Flutter and Response of a Mistuned Cascade in Incompressible Flow
,”
AIAA J.
,
20
(
8
), pp.
1120
1127
.10.2514/3.51172
7.
Kaza
,
K. R. V.
, and
Kielb
,
R. E.
,
1982
, “
Flutter of Turbofan Rotors With Mistuned Blades
,”
AIAA J.
,
22
, pp.
1618
1625
.10.2514/3.8827
8.
Kaza
,
K. R. V.
, and
Kielb
,
R. E.
,
1984
, “
Effects of Structural Coupling on Mistuned Cascade Flutter and Response
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
17
24
.10.1115/1.3239532
9.
Bendiksen
,
O. O.
,
1984
, “
Flutter of Mistuned Turbomachinery Rotors
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
25
33
.10.1115/1.3239546
10.
Ewins
,
D. J.
, and
Han
,
Z. S.
,
1984
, “
Resonant Vibration Levels of a Mistuned Bladed Disk
,”
ASME J. Vib., Acoust.
,
106
, pp.
211
217
.10.1115/1.3269171
11.
Afolabi
,
D.
,
1985
, “
The Frequency Response of Mistuned Bladed Disk Assemblies
,”
Vibrations of Blades and Bladed Disk Assemblies
, Proceedings of the Tenth Biennial Conference on Mechanical Vibration and Noise, Cincinnati, OH, September 10–13.
12.
Afolabi
,
D.
,
1985
, “
The Eigenvalue Spectrum of a Mistuned Bladed Disk
,”
Vibrations of Blades and Bladed Disk Assemblies
, Proceedings of the Tenth Biennial Conference on Mechanical Vibration and Noise, Cincinnati, OH, September 10–13.
13.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part I: Free Vibrations
,”
ASME J. Vib., Acoust.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
14.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part II: Forced Vibrations
,”
ASME J. Vib., Acoust.
,
110
(
4
), pp.
439
449
.10.1115/1.3269548
15.
Wei
,
S. T.
, and
Pierre
,
C.
,
1990
, “
Statistical Analysis of the Forced Response of Mistuned Cyclic Assemblies
,”
AIAA J.
,
28
(
5
), pp.
861
868
.
10.2514/3.25131
16.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2003
, “
A Compact, Generalized Component Model Mistuning Representation for Modeling Bladed Disk Vibration
,”
Proceeding of the 44th AIAA/ASME/ASCE/AHS/ASC Structures
, Structural Dynamics, and Materials Conference and Exhibit, Norfolk, VA, April 7–10,
AIAA
Paper No. 2003-1545.10.2514/6.2003-1545
17.
McGee
,
O. G.
,
Fang
,
C.
, and
El-Aini
,
Y.
,
2013
, “
A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part I: Theoretical Basis
,”
ASME J. Turbomach.
, (to be published).10.1115/1.4004445
18.
McGee
,
O. G.
, and
Fang
,
C.
,
2008
, “
A Reduced-Order Integrated Design Synthesis for the Three-Dimensional Tailored Vibration Response and Flutter Control of High-Bypass Shroudless Fans
,” ASME IGTI Turbo Expo’08, Berlin, June 9–13,
ASME
Paper No. GT2008-51479.10.1115/GT2008-51479
19.
McGee
,
O. G.
, and
Fang
,
C.
,
2010
, “
Three-Dimensional Tailored Vibration Response and Flutter Control of High-Bypass Shroudless Fans
,”
ASME J. Vibr. Acoust.
(in press).10.1115/1.4006758
20.
Dye
,
R. C.
, and
Henry
,
T. A.
,
1969
, “
Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies
,”
ASME J. Eng. Power
,
91
(
3
), pp.
182
187
.10.1115/1.3574726
21.
Ewins
,
D. J.
,
1976
, “
An Experimental Investigation of the Forced Vibration of Bladed Discs Due to Aerodynamic Excitation: A Theoretical Study of the Damped Forced Vibration Response of Bladed Discs
,” Structural Dynamic Aspects of Bladed Disc Assemblies, Proceedings of the ASME Winter Annual Meeting, New York, December 5–10.
22.
Ewins
,
D. J.
,
1969
, “
The Effects of Detuning Upon the Forced Vibrations of Bladed Discs
,”
J. Sound Vib.
,
9
(
1
), pp.
65
72
.10.1016/0022-460X(69)90264-8
23.
Ewins
,
D. J.
,
1976
, “
Vibration Modes of Mistuned Bladed Disks
,”
ASME J. Eng. Power
,
98
(
3
), pp.
349
355
.10.1115/1.3446180
24.
Fabunmi
,
J. A.
,
1980
, “
Forced Vibration of a Single Stage Axial Compressor Rotor
,”
ASME J. Eng. Power
,
102
(
2
), pp.
322
329
.10.1115/1.3230255
25.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
, pp.
411
424
.10.1016/S0022-460X(82)80022-9
26.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistuning
,”
ASME J. Vib., Acoust.
,
106
, pp.
204
210
.10.1115/1.3269170
27.
Griffin
,
J. H.
,
1988
, “
On Predicting the Resonant Response of Bladed Disk Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
110
, pp.
45
50
.10.1115/1.3240085
28.
Ottarsson
,
G. S.
, and
Pierre
,
C.
,
1993
, “
A Transfer Matrix Approach to Vibration Localization in Mistuned Blade Assemblies
,”
Proceedings of the International Gas Turbine and Aeroengine Congress
, Cincinnati, OH, May 24–27, ASME Paper No. 93-GT-115.
29.
Ottarsson
,
G. S.
, and
Pierre
,
C.
,
1993
, “Vibration in Mono- and Bi-Coupled Bladed Disks—A Transfer Matrix Approach,
AIAA
Paper No. AIAA-93-1492-CP.10.2514/6.1993-1492
30.
Ottarsson
,
G. S.
,
1994
, “
Dynamic Modeling and Vibration Analysis of Mistuned Bladed Disks
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
31.
Ottarsson
,
G. S.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1994
, “
A Reduced-Order Modeling Technique for Mistuned Bladed Disks
,”
AIAA
Paper No. AIAA-94-1640-CP.10.2514/6.1994-1640
32.
Ottarsson
,
G. S.
, and
Pierre
,
C.
,
1995
, “
On the Effects of Interblade Coupling on the Statistics of Maximum Forced Response Amplitudes in Mistuned Bladed Disks
,” SDM Conference,
AIAA
Paper No. AIAA-95-1494-CP.10.2514/6.1995-1494
33.
Wagner
,
L. F.
, and
Griffin
,
J. H.
,
1994
, “Forced Harmonic Response of Grouped Blade Systems—Part I—Discrete Theory, ASME Paper No. 94-GT-203.
34.
Wagner
,
L. F.
, and
Griffin
,
J. H.
,
1994
, “
Forced Harmonic Response of Grouped Blade Systems: Part II: Application
,” ASME Paper No. 94-GT-204.
35.
McGee
,
O. G.
, and
Chu
,
H. R.
,
1994
, “
Three-Dimensional Vibration Analysis of Rotating Laminated Composite Blades
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
), pp.
663
671
.10.1115/1.2906871
36.
Aronszajn
,
N.
, and
Weinstein
,
A.
,
1941
, “
Existence, Convergence, and Equivalence in the Unified Theory of Eigenvalues of Plates and Membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
27
, pp.
188
191
.10.1073/pnas.27.3.188
37.
Aronszajn
,
N.
, and
Weinstein
,
A.
,
1942
, “
On a Unified Theory of Eigenvalues of Plates and Membranes
,”
Am. J. Math.
,
64
, pp.
623
645
.10.2307/2371709
38.
Temple
,
G.
, and
Bickley
,
W. G.
,
1933
,
Rayleigh’s Principle and Its Applications to Engineering
, Oxford University Press,
London.
39.
Temple
,
G.
,
1952
, “
The Accuracy of Rayleigh’s Method of Calculating the Natural Frequencies of Vibrating Systems
,”
Proc. R. Soc. London, Ser. A
,
211
, pp.
204
224
.10.1098/rspa.1952.0034
40.
Southwell
,
R. V.
,
1953
, “
Some Extension of Rayleigh’s Principle
,”
Q. J. Mech. Appl. Math.
,
6
, pp.
257
272
.10.1093/qjmam/6.3.257
41.
Washizu
,
K.
,
1955
, “
On the Bounds of Eigenvalues
,”
Q. J. Mech. Appl. Math.
,
8
(
3
), pp.
311
325
.10.1093/qjmam/8.3.311
42.
Kohn
,
W.
,
1947
, “
A Note on Weinstein’s Variational Method
,”
Phys. Rev.
,
71
, pp.
902
904
.10.1103/PhysRev.71.902
43.
Kato
,
T.
,
1949
, “
On the Upper and Lower Bounds of Eigenvalues
,”
J. Phys. Soc. Jpn.
,
4
, pp.
334
339
.10.1143/JPSJ.4.334
44.
El-Bayoumy
,
L. E.
, and
Srinivasan
,
A. V.
,
1975
, “
Influence of Mistuning on Rotor-Blade Vibrations
,”
AIAA J.
,
13
(
4
), pp.
460
464
.10.2514/3.49731
45.
Srinavasan
,
A. V.
, and
Frye
,
H. M.
,
1976
, “
Effect of Mistuning on Resonant Stresses of Turbine Blades
,” Structural Dynamic Aspects of Bladed Disc Assemblies, Proceedings of the ASME Winter Annual Meeting, New York, December 5–10.
46.
Sogliero
,
G.
, and
Srinivasan
,
A. V.
,
1980
, “
Fatigue Life Estimates of Mistuned Blades via a Stochastic Approach
,”
AIAA J.
,
18
(
1
), pp.
318
323
.10.2514/3.7654
47.
McBain
,
J. C.
, and
Whaley
,
P. W.
,
1984
, “
Maximum Resonant Response of Mistuned Bladed Disks
,”
ASME J. Vibr. Acoust.
,
106
, pp.
218
223
.10.1115/1.3269172
48.
Mignolet
,
M. P.
,
Hu
,
W.
, and
Jadic
,
I.
,
2000
, “
On the Forced Response of Harmonically and Partially Mistuned Bladed Disks—Part I: Harmonic Mistuning
,”
Int. J. Rotat. Mach.
,
6
(
1
), pp.
29
41
.10.1155/S1023621X0000004X
49.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2000
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,” ASME Paper No. 2000-GT-0360.
50.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
,
“Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part II: Application
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
51.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Reduced-Order Approach for the Vibration of Mistuned Bladed Disk Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
161
167
.10.1115/1.2815542
52.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
,
119
, pp.
647
650
.10.1115/1.2817033
53.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
893
900
.10.1115/1.1385197
54.
Bladh
,
R.
, and
Pierre
,
C.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
311
324
.10.1115/1.1447236
55.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.10.1115/1.1451753
56.
Moyroud
,
F.
,
Fransson
,
T.
, and
Jacquet-Richardet
,
G.
,
2002
, “
A Comparison of Two Finite Element Reduction Techniques for Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
942
952
.10.1115/1.1415741
57.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach
,,
124
, pp.
597
605
.10.1115/1.1508384
58.
Kenyon
,
J. A.
,
Cross
,
C. J.
, and
Minkiewicz
,
G. R.
,
2000
, “
Mechanical Coupling Effects on Turbomachine Mistuned Response
,”
J. Propul. Power
,
16
, pp.
1149
1154
.10.2514/2.5690
59.
Kenyon
,
J. A.
,
2002
, “
Robust Maximum Forced Response in Mistuned Turbine Engine Bladed Disks
,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA.
60.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Forced Response of Turbine Engine Bladed Disks and Sensitivity to Harmonic Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
113
120
.10.1115/1.1498269
61.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Experimental Demonstration of Maximum Mistuned Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
125
, pp.
673
681
.10.1115/1.1624847
62.
Kenyon
,
J. A.
,
Griffin
,
J. H.
, and
Feiner
,
D. M.
,
2003
, “
Maximum Bladed Disk Forced Response From Distortion of a Structural Mode
,”
ASME J. Turbomach.
,
125
, pp.
352
363
.10.1115/1.1540118
63.
Kruse
,
M.
, and
Pierre
,
C.
,
1996
, “
Forced Response of Mistuned Bladed Disks Using Reduced-Order Modeling
,”
AIAA
Paper No. AIAA-96-1545.10.2514/6.1996-1545
64.
Fleeter
,
S.
, and
Hoyniak
,
D.
,
1987
, “
Chordwise Spacing Aerodynamic Detuning for Unstalled Supersonic Flutter Stability Enhancement
,”
J. Sound Vib.
,
115
(
3
), pp.
483
497
.10.1016/0022-460X(87)90292-6
65.
Sladojević
,
I.
,
Sayma
,
A. I.
, and
Imregun
,
M.
,
2007
, “
Influence of Stagger Angle Variation on Aerodynamic Damping and Frequency Shifts
,” ASME Turbo Expo’07, Montreal, Canada, ASME Paper No. GT-2007-28166.
66.
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Miyakozawa
,
T.
,
2007
, “
The Effects of Unsteady Aerodynamic Asymmetric Perturbations on Flutter
,” ASME Turbo Expo’07, Montreal, Canada, May 14–17,
ASME
Paper No. GT-2007-27503.10.1115/GT2007-27503
67.
Miyakozawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2008
, “
The Effects of Aerodynamic Perturbations on Forced Response of Bladed Disks
,” ASME Turbo Expo’08, Berlin, June 9–13,
ASME
Paper No. GT-2008-50719.10.1115/GT2008-50719
68.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2008
, “
Aerodynamic Asymmetry Analysis of Unsteady Flows in Turbomachinery
,” ASME Turbo Expo’08, Berlin June 9–13,
ASME
Paper No. GT-2008-51176.10.1115/GT2008-51176
69.
Sanders
,
A.
,
2005
, “
Nonsynchronous Vibration Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,”
ASME J. Turbomach.
,
127
, pp.
412
421
.10.1115/1.1811091
70.
Spiker
,
M. A.
,
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Thomas
,
J. P.
,
2008
, “
Efficient Design Method for Non-Synchronous Vibrations Using Enforced Motion
,” ASME Turbo Expo’08, Berlin, June 9–13,
ASME
Paper No. GT-2008-50599.10.1115/GT2008-50599
71.
Afolabi
,
D.
,
1988
, “
A Note on the Rogue Failure of Turbine Blades
,”
J. Sound Vib.
,
122
(
3
), pp.
535
545
.10.1016/S0022-460X(88)80100-7
72.
Watson
,
B. C.
,
Kamat
,
M. P.
, and
Murthy
,
D. V.
,
1993
, “
Forced Response of Mistuned Bladed Disk Assemblies
,”
AIAA
Paper No. AIAA-93-1491-CP.10.2514/6.1993-1491
You do not currently have access to this content.