In this paper, a reduced order model for the vibrations of bladed disk assemblies was achieved. The system studied was a 3D annulus of shroudless, “custom-tailored,” mistuned blades attached to a flexible disk. Specifically, the annulus was modeled as a spectral-based “meshless” continuum structure utilizing only nodal data to describe the arbitrary volume in which the system's dynamical energy was minimized. An extended Ritz variational procedure was used to minimize this energy, subjected to constraints imposed by an assumed 3D displacement field of mathematically complete, orthonormal “blade-disk” polynomials multiplied by generalized coefficients. The coefficients were determined by constraining the polynomial series to satisfy the extended Ritz stationary equations and essential boundary conditions of the bladed disk. From this, the governing equations of motion were generated into their usual dynamical forms to calculate upper-bounds on the actual free and forced responses of bladed disks. No conventional finite elements and element connectivity or component substructuring data were needed. This paper, Part I, outlines the theoretical foundation of the present model, and through extensive Monte Carlo simulations, establishes the analytical basis, predictive accuracy, and re-analysis efficiency of the present technology in the prediction of 3D maximum response amplitude of mistuned bladed disks having increasing numbers of nodal diameter excitations. Further applications validating the 3D approach against conventional finite element procedures of free and forced response prediction of a mistuned Integrally-Bladed Rotor used in practice is presented in a companion paper, Part II (Fang, McGee, and El-Aini, 2013, “A Reduced-Order Meshless Energy Model for the Vibrations of Mistuned Bladed Disks—Part II: Finite Element Benchmark Comparisons, ASME J. Turbomach., to be published.

References

References
1.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME IGTI Scholar Award Paper No. 97-GT-533
.
2.
Fleeter
,
S.
, and
Hoyniak
,
D.
,
1987
, “
Chordwise Spacing Aerodynamic Detuning for Unstalled Supersonic Flutter Stability Enhancement
,”
J. Sound Vib.
,
115
(
3
),
pp.
483
497
.10.1016/0022-460X(87)90292-6
3.
Sladojević
,
I.
,
Sayma
,
A. I.
, and
Imregun
,
M.
,
2007
, “
Influence of Stagger Angle Variation on Aerodynamic Damping and Frequency Shifts
,” ASME Turbo Expo’07,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-28166
.10.1115/GT2007-28166
4.
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Miyakozawa
,
T.
,
2007
, “
The Effects of Unsteady Aerodynamic Asymmetric Perturbations on Flutter
,” ASME Turbo Expo’07,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-27503
.10.1115/GT2007-27503
5.
Miyakozawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2008
, “
The Effects of Aerodynamic Perturbations on Forced Response of Bladed Disks
,” ASME Turbo Expo’08,
Berlin,
June 9–13,
ASME
Paper No. GT2008-50719
.10.1115/GT2008-50719
6.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2008
, “
Aerodynamic Asymmetry Analysis of Unsteady Flows in Turbomachinery
,” ASME Turbo Expo’08,
Berlin, June 9–13
,
ASME
Paper No. GT2008-51176
.10.1115/GT2008-51176
7.
Sanders
,
A.
,
2005
, “
Nonsynchronous Vibration Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,”
ASME J. Turbomach.
,
127
,
pp.
412
421
.10.1115/1.1811091
8.
Spiker
,
M. A.
,
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Thomas
,
J. P.
,
2008
, “
Efficient Design Method for Non-Synchronous Vibrations Using Enforced Motion
,” ASME Turbo Expo’08,
Berlin, June 9–13
,
ASME
Paper No. GT2008-50599
.10.1115/GT2008-50599
9.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamics Analyses
,”
AIAA J.
,
6
(
7
),
pp.
1313
1319
.10.2514/3.4741
10.
MacNeal
,
R. H.
,
1971
, “
Hybrid Method of Component Mode Synthesis
,”
Comput. Struct.
,
1
(
4
),
pp.
581
601
.10.1016/0045-7949(71)90031-9
11.
Rubin
,
S.
,
1975
, “
Improved Component-Mode Representation for Structural Dynamic Analysis
,”
AIAA J.
,
13
(
8
),
pp.
995
1006
.10.2514/3.60497
12.
Hintz
,
R. M.
,
1975
, “
Analytical Methods in Component Modal Synthesis
,”
AIAA J.
,
13
(
8
),
pp.
1007
1016
.10.2514/3.60498
13.
Craig
,
R. R.
, Jr.
, and
Chang
,
C. J.
,
1976
, “
Free-Interface Methods of Substructure Coupling for Dynamic Analysis
,”
AIAA J.
,
14
(
11
),
pp.
1633
1635
.10.2514/3.7264
14.
Craig
,
R. R.
, Jr.
,
1977
, “
Substructure Coupling for Dynamic Analysis
,”
ASCE Engineering Mechanics Division, 2nd Specialty Conference Proceedings
,
Raleigh, NC
,
May 23–25
,
pp.
389
392
.
15.
Craig
, Jr.
R. R.
,
1981
,
Structural Dynamics, An Introduction to Computer Methods
,
John Wiley & Sons
,
New York
.
16.
Ottarsson
,
G. S.
, and
Pierre
,
C.
,
1993
, “
A Transfer Matrix Approach to Vibration Localization in Mistuned Blade Assemblies
,”
ASME Paper No. 93-GT-115
.
17.
Ottarsson
,
G. S.
,
1994
, “
Dynamic Modeling and Vibration Analysis of Mistuned Bladed Disks
,”
Ph.D. Thesis
,
University of Michigan
,
Ann Arbor, MI
.
18.
Ottarsson
,
G. S.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
1994
, “
A Reduced-Order Modeling Technique for Mistuned Bladed Disks
,”
AIAA
Paper No. AIAA-94-1640-CP.10.2514/6.1994-1640
19.
Castanier
,
M. P.
,
Ottarson
,
G.
, and
Pierre
,
C.
,
1994
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
,
pp.
439
447
.10.1115/1.2889743
20.
Ottarsson
,
G. S.
, and
Pierre
,
C.
,
1995
, “
On the Effects of Interblade Coupling on the Statistics of Maximum Forced Response Amplitudes in Mistuned Bladed Disks
,” 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, New Orleans, LA, April 10–13,
AIAA
Paper No. AIAA-95-1494-CP.10.2514/6.1995-1494
21.
Kruse
,
M.
, and
Pierre
,
C.
,
1996
, “
Forced Response of Mistuned Bladed Disks Using Reduced-Order Modeling
,”
AIAA
Paper No. AIAA-96-1545.10.2514/6.1996-1545
22.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks, Part I: Theoretical Models, Part II: Application
,”
ASME Paper No 2000-GT-0360
.
23.
Bladh
,
R.
, and
Pierre
,
C.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
,
pp.
311
324
.10.1115/1.1447236
24.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, , “
Statistical Analysis of the Forced Response of Mistuned Cyclic Assemblies
,”
AIAA J.
,
28
(
5
),
pp.
861
868
.10.2514/3.25131
25.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part I: Free Vibrations
,”
J. Vib., Acoust.
,
110
(
4
),
pp.
429
438
;
Idem
,10.1115/1.3269547
26.
Wei
,
S. T.
, and
Pierre
,
C.
,
1990
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part II: Forced Vibrations
,”
J. Vib., Acoust.
,
110
(
4
),
pp.
439
449
.10.1115/1.3269548
27.
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2004
, “
Local/Global Effects of Mistuning on the Forced Response of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
),
pp.
131
141
.10.1115/1.1581898
28.
Alvalos
,
J.
,
Mignolet
,
M. P.
, and
Soize
,
C.
,
2009
, “
Response of Bladed Disks With Mistuned Bladed-Disk Interfaces
,” ASME Turbo Expo’09,
Orlando, FL, June 8–12
,
ASME
Paper No. GT2009-59580
.10.1115/GT2009-59580
29.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Reduced-Order Approach for the Vibration of Mistuned Bladed Disk Assemblies
,”
ASME Paper No. 95-GT-454
.
30.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
,
119
,
pp.
647
650
.10.1115/1.2817033
31.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
),
pp.
893
900
.10.1115/1.1385197
32.
Petrov
,
E. P.
,
Sanliturk
,
K. Y.
, and
Ewins
,
D. J.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
),
pp.
586
597
.10.1115/1.1451753
33.
Kenyon
,
J. A.
,
Griffin
,
J. H.
, and
Feiner
,
D. M.
,
2003
, “
Maximum Bladed Disk Forced Response From Distortion of a Structural Mode
,”
ASME J. Turbomach.
,
125
(
2
),
pp.
352
363
.10.1115/1.1540118
34.
Kenyon
,
J. A.
,
2002
, “
Robust Maximum Forced Response in Mistuned Turbine Engine Bladed Disks
,”
Ph.D. dissertation
,
Carnegie Mellon University
,
Pittsburgh, PA
.
35.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Forced Response of Turbine Engine Bladed Disks and Sensitivity to Harmonic Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
125
,
pp.
113
120
.10.1115/1.1498269
36.
Kenyon
,
J. A.
, and
Griffin
,
J. H.
,
2003
, “
Experimental Demonstration of Maximum Mistuned Bladed Disk Forced Response
,”
ASME J. Turbomach.
,
125
,
pp.
673
681
.10.1115/1.1624847
37.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mach. Eng. Sci.
,
8
(
1
),
pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
38.
Whitehead
,
D. S.
,
1998
, “
The Maximum Factor by Which Forced Vibration of Blades Can Increase Due to Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
120
,
pp.
115
119
.10.1115/1.2818061
39.
Whitehead
,
D. S.
,
1976
, “
Effect of Mistuning on Forced Vibration of Blades With Mechanical Coupling
,”
J. Mech. Eng. Sci.
,
18
,
pp.
306
307
.10.1243/JMES_JOUR_1976_018_049_02
40.
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2003
, “
Maximum Amplification of Blade Response Due to Mistuning: Localization and Mode Shapes Aspects of the Worst Disks
,”
ASME J. Turbomach.
,
125
(
3
),
pp.
442
454
.10.1115/1.1506958
41.
Xiao
,
B.
,
Rivas-Guerra
,
A. J.
, and
Mignolet
,
M. P.
,
2004
, “
Maximum Amplification of Blade Response Due to Mistuning in Multi-Degree-of-Freedom Blade Models
,” Proceedings of the IGTI Turbo Expo’04,
Vienna, Austria
,
June 14–17
,
ASME
Paper No. GT2004-54030
.0.1115/GT2004-54030
42.
Han
,
Y.
,
Xiao
,
B.
, and
Mignolet
,
M. P.
,
2007
, “
Expedient Estimation of the Maximum Amplification Factor in Damped Mistuned Bladed Disks
,” Proceedings of the IGTI Turbo Expo’07,
Montreal, Canada
,
May 14–17
,
ASME
Paper No. GT2007-27353
.10.1115/GT2007-27353
43.
Martel
,
C.
, and
Corral
,
R.
, “
Asymptotic Description of Maximum Mistuning Amplification of Bladed-Disk Forced Response
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
022506-1
.10.1115/1.2968868
44.
Segui
,
B.
, and
Casanova
,
E.
,
2007
, “
Application of a Reduced Order Modeling Technique for Mistuned Bladed Disk-Shaft Assemblies
,” Proceedings of the IGTI Turbo Expo’07,
Montreal, Canada
,
May 14–17
,
ASME
Paper No. GT2007-27594
.10.1115/GT2007-27594
45.
Laxalde
,
D.
,
Lombard
,
J. P.
, and
Thouverez
,
F.
,
2007
, “
Dynamics of Multi-Stage Bladed Disks Systems
,” Proceedings of the IGTI Turbo Expo’07,
Montreal, Canada
,
May 14–17
,
ASME
Paper No. GT2007-27083
.10.1115/GT2007-27083
46.
Sinha
,
A.
,
2007
, “
Reduced-Order Model of a Mistuned Multi-Stage Bladed Rotor
,” Proceedings of the IGTI Turbo Expo’07,
Montreal, Canada
,
May 14–17
,
ASME
Paper No. GT2007-27277
.10.1115/GT2007-27277
47.
Song
,
S. H.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
System Identification Of Multistage Turbine Engine Rotors
,” Proceedings of the IGTI Turbo Expo’07,
Montreal, Canada
,
May 14–17
,
ASME
Paper No. GT2007-28307
.10.1115/GT2007-28307
48.
Watson
,
B. C.
,
Kamat
,
M. P.
, and
Murthy
,
D.V.
,
1993
, “
Forced Response of Mistuned Bladed Disk Assemblies
,”
AIAA
Paper No. AIAA-93-1491-CP.10.2514/6.1993-1491
49.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
,
1992
, “
Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
,
10
,
pp.
301
318
.10.1007/BF00364252
50.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1994
, “
Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
,
37
,
pp.
229
256
.10.1002/nme.v37:2
51.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1994
, “
A New Implementation of the Element-Free Galerkin Method
,”
Comput. Methods Appl. Mech. Eng.
,
113
,
pp.
397
414
.10.1016/0045-7825(94)90052-3
52.
Belytschko
,
T.
,
Lu
,
Y. Y.
, and
Gu
,
L.
,
1994
, “
Fracture and Crack Growth by Element-Free Galerkin Methods
,”
Model. Simul. Mater. Sci. Eng.
,
2
,
pp.
519
534
.10.1088/0965-0393/2/3A/007
53.
Belytschko
,
T.
, and
Tabbara
,
M.
,
1996
, “
Dynamic Fracture Using Element-Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
,
39
,
pp.
923
938
.10.1002/(SICI)1097-0207(19960330)39:6<>1.0.CO;2-9
54.
Lui
,
W. K.
,
Chen
,
Y.
,
Chang
,
C. T.
, and
Belytschko
,
T.
,
1996
, “
Advances in Multiple Scale Kernel Particle Methods
,”
Comput. Mech.
,
18
,
pp.
73
111
.10.1007/BF00350529
55.
Atluri
,
S. N.
, and
Zhu
,
T.
,
1998
, “
A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics
,”
Comput. Mech.
,
22
,
pp.
117
127
.10.1007/s004660050346
56.
Zhu
,
T.
, and
Atluri
,
S. N.
,
1998
, “
A Modified Collocation and a Penalty Formulation for Enforcing the Essential Boundary Conditions in the Element-Free Galerkin Method
,”
Comput. Mech.
,
21
,
pp.
211
222
.10.1007/s004660050296
57.
Zhu
,
T.
,
Zhang
,
J. D.
, and
Atluri
,
S. N.
,
1998
, “
A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics and a Meshless Discretization Approach
,”
Comput. Mech.
,
21
,
pp.
223
235
.10.1007/s004660050297
58.
El Ouatouati
,
A.
, and
Johnson
,
D. A.
,
1999
, “
A New Approach for Numerical Modal Analysis Using the Element-Free Method
,”
Int. J. Numer. Methods Eng.
,
46
,
pp.
1
27
.10.1002/(SICI)1097-0207(19990910)46:1<>1.0.CO;2-Q
59.
Monaghan
,
J. J.
,
1982
, “
Why Particle Methods Work
,”
SIAM J. Sci. Stat. Comput.
,
3
,
pp.
422
433
.10.1137/0903027
60.
Monaghan
,
J. J.
,
1988
, “
An Introduction of Smooth Particle Hydrodynamics (SPH)
,”
Comput. Phys. Commun.
,
48
,
pp.
89
96
.10.1016/0010-4655(88)90026-4
61.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astronaut. Soc.
,
181
,
pp.
375
389
.
62.
Omprakash
,
V.
, and
Ramamurti
,
V.
,
1988
, “
Natural Frequencies of Bladed Disks by a Combined Cyclic Symmetry and Rayleigh-Ritz Method
,”
J. Sound Vib.
,
125
(
2
),
pp.
357
366
.10.1016/0022-460X(88)90289-1
63.
McGee
,
O. G.
, and
Chu
,
H. R.
,
1994
, “
Three-Dimensional Vibration Analysis of Rotating Laminated Composite Blades
,”
ASME J. Eng. Gas Turbines Power
,
116
(
3
),
pp.
663
671
.10.1115/1.2906871
64.
McGee
,
O. G.
, and
Fang
,
C.
,
2008
, “
A Reduced-Order Integrated Design Synthesis for the Three-Dimensional Tailored Vibration Response and Flutter Control of High-Bypass Shroudless Fans
,” ASME IGTI Turbo Expo’08,
Berlin, June 9–13
,
ASME
Paper No. GT2008-51479
.10.1115/GT2008-51479
65.
McGee
,
O. G.
, and
Fang
,
C.
,
2013
, “
Three-Dimensional Tailored Vibration Response and Flutter Control of High-Bypass Shroudless Fans
,”
ASME J. Vib. Acoust.
(in press).10.1115/1.4006758
66.
Poincare
,
H.
,
1890
, “
Sur les Equations aux Derivees Partielles de la Physique Mathematique
,”
Am. J. Math.
,
12
,
pp.
211
294
.10.2307/2369620
67.
Rayleigh
,
J. W. S.
,
1896
,
The Theory of Sound
,
2nd ed.
,
Macmillan
,
London
.
68.
Ritz
,
W.
,
1909
, “
Uber eine neue Methode zur Losung gewisser Variationsprobleme der mathematischen Physik
,”
J. Reine Angew Math.
,
135
,
pp.
1
61
.10.1515/crll.1909.135.1
69.
Southwell
,
R.V.
,
1953
, “
Some Extension of Rayleigh's Principle
,”
Q. J. Mech. Appl. Math.
,
6
,
pp.
257
272
.10.1093/qjmam/6.3.257
70.
Aronszajn
,
N.
, and
Weinstein
,
A.
,
1941
, “
Existence, Convergence, and Equivalence in the Unified Theory of Eigenvalues of Plates and Membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
27
,
pp.
188
191
.10.1073/pnas.27.3.188
71.
Aronszajn
,
N.
, and
Weinstein
,
A.
,
1942
, “
On a Unified Theory of Eigenvalues of Plates and Membranes
,”
Am. J. Math.
,
64
,
pp.
623
645
.10.2307/2371709
72.
Temple
,
G.
, and
Bickley
,
W. G.
,
1933
,
Rayleigh's Principle and Its Applications to Engineering
,
Oxford University Press
,
London
.
73.
Temple
,
G.
,
1952
, “
The Accuracy of Rayleigh's Method of Calculating the Natural Frequencies of Vibrating Systems
,”
Proc. R. Soc. London, Ser. A
,
211
,
pp.
204
224
.10.1098/rspa.1952.0034
74.
Washizu
,
K.
,
1955
, “
On the Bounds of Eigenvalues
,”
Q. J. Mech. Appl. Math.
,
8
(
3
),
pp.
311
325
.10.1093/qjmam/8.3.311
75.
Weinstein
,
A.
,
1935
, “
On a Minimal Problem in the Theory of Elasticity
,”
J. Lond. Math. Soc.
,
10
,
pp.
184
192
.10.1112/jlms/s1-10.2.184
76.
Kohn
,
W.
,
1947
, “
A Note on Weinstein's Variational Method
,”
Phys. Rev.
,
71
,
pp.
902
904
.10.1103/PhysRev.71.902
77.
Kato
,
T.
,
1949
, “
On the Upper and Lower Bounds of Eigenvalues
,”
J. Phys. Soc. Jpn.
,
4
,
pp.
334
339
.10.1143/JPSJ.4.334
78.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamutto
,
H. I. H.
,
1987
,
Gas Turbine Theory
,
3rd ed.
,
Longman Scientific and Technical
,
New York
.
79.
Chakraverty
,
S.
,
Bhat
,
R. B.
, and
Stiharu
,
I.
,
1999
, “
Recent Research on Vibration of Structures Using Boundary Characteristic Orthogonal Polynomials in the Rayleigh-Ritz Method
,”
Shock Vib. Dig.
,
31
(
3
),
pp.
187
194
.10.1177/058310249903100301
80.
Golub
,
G. H.
, and
VanLoan
,
C. F.
,
1996
,
Matrix Computation
,
The John Hopkins University Press
,
Baltimore, MD
.
81.
Wagner
,
L. F.
, and
Griffin
,
J. H.
,
1994
, “
Forced Harmonic Response of Grouped Blade Systems: Part I—Discrete Theory
,”
ASME Paper No. 94-GT-203
.
82.
Mikolajczak
,
A. A.
,
Synder
,
L. E.
,
Arnoldi
,
R. A.
, and
Stargardter
,
H.
,
1975
, “
Advances in Fan and Compressor Blade Flutter Analysis and Predictions
,”
AIAA J. Aircr.
12
(
4
),
pp.
325
332
.10.2514/3.44451
83.
Campbell
,
W.
,
1924
, “
Protection of Steam Turbine Disk Wheels From Axial Vibration
,”
ASME Spring Meeting
,
Cleveland, OH
,
Paper No. 1920
.
84.
Dye
,
R. C.
, and
Henry
,
T. A.
,
1969
, “
Vibration Amplitudes of Compressor Blades Resulting From Scatter in Blade Natural Frequencies
,”
ASME J. Eng. Power
,
91
(3),
pp.
182
187
.10.1115/1.3574726
85.
Ewins
,
D. J.
,
1976
, “
An Experimental Investigation of the Forced Vibration of Bladed Discs Due to Aerodynamic Excitation
,”
Proceedings of the ASME Winter Annual Meeting
,
Structural Dynamic Aspects of Bladed Disc Assemblies
,
New York
.
86.
Ewins
,
D. J.
,
1976
, “
A Theoretical Study of the Damped Forced Vibration Response of Bladed Discs
,”
Proceedings of the ASME Winter Meeting
,
Structural Dynamic Aspects of Bladed Disc Assemblies
,
New York
.
87.
Ewins
,
D. J.
,
1976
, “
Vibration Modes of Mistuned Bladed Disks
,”
ASME J. Eng. Power
,
98
(
3
),
pp.
349
355
.10.1115/1.3446180
88.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
),
pp.
678
685
.10.2514/3.2947
89.
Dowell
,
E. H.
,
1972
, “
Free Vibrations of an Arbitrary Structure in Terms of Component Modes
,”
ASME J. Appl. Mech.
, 39(3), pp. 727–732.10.1115/1.3422780
90.
Huang
,
W. H.
,
1982
, “
Vibration of Some Structures With Periodic Random Parameters
,”
AIAA J.
,
20
(
7
),
pp.
1001
1008
.10.2514/3.51159
91.
Wagner
,
L. F.
, and
Griffin
,
J. H.
,
1994
, “
Forced Harmonic Response of Grouped Blade Systems: Part II—Application
,”
ASME Paper No. 94-GT-204
.
92.
Castanier
,
M. P.
, and
Pierre
,
C.
,
1997
, “
Consideration on the Benefits of Intentional Blade Mistuning for the Forced Response of Turbomachinery Rotors
,”
Proceedings of the 1997 ASME International Mechanical Engineering Congress and Exposition, AD-55
,
ASME
,
New York
,
pp.
419
425
.
93.
Castanier
,
M. P.
, and
Pierre
,
C.
,
1998
, “
Investigation of the Combined Effects of Intentional and Random Mistuning on the Forced Response of Bladed Disks
,”
AIAA
Paper No. 98-3720.10.2514/6.1998-3720
94.
Moyroud
,
F.
,
Fransson
,
T.
, and
Jacquet-Richardet
,
G.
,
2002
, “
A Comparison of Two Finite Element Reduction Techniques for Mistuned Bladed Disks
ASME J. Eng. Gas Turbines Power
,
124
,
pp.
942
952
.10.1115/1.1415741
95.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
,
pp.
597
605
.10.1115/1.1508384
96.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2003
, “
A Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,” Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Norfolk, VA, April 7–10,
AIAA
Paper No. 2003-1545
.10.2514/6.2003-1545
You do not currently have access to this content.