In core gas turbines relatively cold air is purged through the hub gap between the stator and rotor in order to seal the disk space against flow ingestion from the main annulus. Although the sealing mass flow rate is commonly very small compared to the main annulus mass flow rate, it can have significant effects on the development of the passage endwall flows and on the overall loss generation. In this paper, the interaction between the annulus and rim sealing flows is investigated using numerical simulations of a generic high-pressure turbine. At first, the numerical approach is validated by comparing the results of calculations to measurement data at the design flow conditions. Following that, results from steady and unsteady calculations are used to describe in detail the aerodynamics in overlap-type rim seals and their effects on the blade passage flow. It is found that the flow interaction at the rim seal interface is strongly influenced by the velocity deficit of the rim sealing flow relative to the annulus flow as well as by the circumferentially nonuniform pressure field imposed by the rotor blades. At typical sealing flow conditions, the flow interaction at the rim seal interface is found to be naturally unsteady, with periodical vortex shedding into the rotor passage. The rim seal geometry, in particular close to the annulus interface, is found to have an effect on the frequency of the shedding process. Finally, it is shown that the rim seal flow interaction can be stabilized by increasing either the sealing mass flow rate or the sealing tangential velocity.

References

References
1.
Bohn
,
D. E.
,
Balkowski
,
I.
,
Ma
,
H.
,
Tümmers
,
C.
, and
Sell
,
M.
,
2003
, “
Influence of Open and Closed Shroud Cavities on the Flowfield in a 2-Stage Turbine With Shrouded Blades
,”
ASME
Paper No. GT2003-38436. 10.1115/GT2003-38436
2.
Lott
,
P. T.
,
Hills
,
N. J.
,
Chew
,
J. W.
,
Scanlon
,
T.
, and
Shahpar
,
S.
,
2009
, “
High Pressure Turbine Stage Endwall Profile Optimisation for Performance and Rim Seal Effectiveness
,”
ASME
Paper No. 2009-59923. 10.1115/GT2009-59923
3.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
,
Lapointe
,
S.
,
Caron
,
J.-F.
, and
Marini
R.
,
2010
, “
Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME
Paper No. GT2010-22729. 10.1115/GT2010-22729
4.
Mirzamoghadam
,
A. V.
,
Heitland
,
G.
, and
Hosseini
,
K. M.
,
2009
, “
The Effect of Annulus Performance Parameters on Rotor-Stator Cavity Sealing Flow
,”
ASME
Paper No. GT2009-59380. 10.1115/GT2009-59380
5.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2006
, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disk Cavities
,”
ASME
Paper No. GT2006-90307. 10.1115/GT2006-90307
6.
O'Mahoney
,
T. S. D.
,
Hills
,
N. J.
,
Chew
,
J. W.
, and
Scanlon
,
T.
,
2010
, “
Large-Eddy Simulation of Rim Seal Ingestion
,”
ASME
Paper No. GT2010-22962. 10.1115/GT2010-22962
7.
Laskowski
,
G. M.
,
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Ledezma
,
G.
,
Kapetanovic
,
S.
,
Itzel
,
G. M.
,
Sullivan
,
M. A.
, and
Farrell
,
T. R.
,
2011
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part II: CFD Simulations
,”
ASME J. Turbomach.
,
133
, p.
041020
.10.1115/1.4002410
8.
De la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
, p.
011004
.10.1115/1.2950052
9.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Seal Cavity of a 1.5 Stage Gas Turbine
,”
ASME
Paper No.GT2009-59965. 10.1115/GT2009-59965
10.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
,
Saurabh
,
P.
, and
Paolillo
,
R. E.
,
2004
,
Experiments on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,”
ASME
Paper No. GT2004-53394. 10.1115/GT2004-53394
11.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
DeVito
,
L.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
ASME
Paper No. GT2004-53829. 10.1115/GT2004-53829
12.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High Work Turbine
,”
ASME J. Turbomach.
,
132
, p.
021021
.10.1115/1.4000485
13.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
, p.
021011
.10.1115/1.4000578
14.
Moinier
,
P.
,
1999
, “Algorithm Developments for an Unstructured Viscous Flow Solver,” Ph.D. thesis, University of Oxford, Oxford, UK.
15.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,” ASME Paper No. GT2003-38698.
16.
Popović
,
I.
, and
Hodson
,
H. P.
,
2010
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded HP Turbine Blades
,”
ASME
Paper No. GT2010-22311. 10.1115/GT2010-22311
You do not currently have access to this content.