The paper presents an experimental and computational study of the unsteady behavior of the rotor hub passage vortex in an axial low-pressure turbine. Different flow structures are identified as having an effect on the size, strength, shape, position, and the unsteady behavior of the rotor hub passage vortex. The aim of the presented study is to analyze and quantify the sensitivities of the different flow structures and to investigate their combined effects on the rotor hub passage vortex. Particular attention is paid to the effect of the rim seal purge flow and of the unsteady blade row interaction. The rotor under investigation has nonaxisymmetric end walls on both hub and shroud and is tested at three different rim seal purge flow injection rates. The rotor has separated pressure sides at the operating point under investigation. The nondimensional parameters of the tested turbine match real engine conditions. The 2-sensor fast response aerodynamic probe (FRAP) technique and the fast response entropy probe (FENT) systems developed by ETH Zurich are used in this experimental campaign. Time-resolved measurements of the unsteady pressure, temperature and entropy fields between the rotor and stator blade rows are taken and analyzed. Furthermore, the results of URANS simulations are compared to the measurements and the computations are also used to detail the flow field. The experimental results show a 30% increase of the maximum unsteadiness and a 4% increase of the loss in the hub passage vortex per percent of injected rim seal cooling flow. Compared to a free stream particle, the rim seal purge flow was found to do 60% less work on the rotor.

References

References
1.
Kobayashi
,
N.
,
Matsumato
,
M.
, and
Shizuya
,
M.
,
1984
, “
An Experimental Investigation of a Gas-Turbine Disk Cooling System
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
136
141
.10.1115/1.3239525
2.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
,
1992
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
,
114
(
2
), pp.
433
-
438
.10.1115/1.2929162
3.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor-Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.10.1115/1.2929163
4.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part II—Aerodynamic Measurements in the Rotational Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
697
703
.10.1115/1.1397303
5.
Ong
,
J. H. P.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2006
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME Turbo Expo
, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-91060. 10.1115/GT2006-91060
6.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.10.1115/1.1791644
7.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator–Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME Turbo Expo
, Barcelona, Spain, May 8–11,
ASME
Paper No. GT2006-90838. 10.1115/GT2006-90838
8.
Marini
,
R.
, and
Girgis
,
S.
,
2007
, “
The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage
,”
ASME Turbo Expo
, Montreal, Canada, May 14–17,
ASME
Paper No. GT2007-27429. 10.1115/GT2007-27429
9.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.10.1115/1.4000578
10.
Binder
,
A.
,
Forster
,
W.
,
Mach
,
K.
, and
Rogge
,
H.
,
1987
. “
Unsteady Flow Interaction Caused by Stator Secondary Vortices in a Turbine Rotor
,”
ASME J. Turbomach.
,
109
(
2
), pp.
251
257
.10.1115/1.3262093
11.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
, and
Hodson
,
H. P.
,
2004
, “
Vortex Transport and Blade Interactions in High Pressure Turbines
,”
ASME J. Turbomach.
,
126
(
3
), pp.
395
406
.10.1115/1.1773849
12.
Matsunuma
,
T.
,
2007
, “
Unsteady Flow Field of an Axial-Flow Turbine Rotor at a Low Reynolds Number
,”
ASME J. Turbomach.
,
129
(
2
), pp.
360
371
.10.1115/1.2464143
13.
Ch. Kasper
,
M.G.
,
Rose
,
S. S.
, and
Gier
,
J.
,
2008
, “
A Study of Unsteady Secondary Flow in a Water Flow Axial Turbine Model
,”
ASME Turbo Expo
, Berlin, June 9–13,
ASME
Paper No. GT2008-50239. 10.1115/GT2008-50239
14.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
, and
Gier
,
J.
,
2011
. “
A Low Pressure Turbine With Profiled End Walls and Purge Flow Operating With a Pressure Side Bubble
,”
ASME J. Turbomach.
,
134
(6)
, p.
061038
10.1115/1.4006303.
15.
Kupferschmied
,
P.
,
Kopperl
,
O.
,
Gizzi
,
W. P.
, and
Gyarmathy
,
G.
,
2000
, “
Time Resolved Flow Measurements With Fast Aerodynamic Probes in Turbomachinery
,”
Meas. Sci. Technol.
,
11
, pp.
1036
1054
.10.1088/0957-0233/11/7/318
16.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2003
, “
Unsteady 3-Dimensional Flow Measurement Using a Miniature Virtual 4-Sensor Fast Response Aerodynamic Probe (FRAP)
,” ASME Turbo Expo, Atlanta, GA, June 16–19,
ASME
Paper No. GT2003-38128. 10.1115/GT2003-38128
17.
Mansour
,
M.
,
Chokani
,
N.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2008
, “
Time-Resolved Entropy Measurements Using a Fast Response Entropy Probe
,”
Meas. Sci. Technol.
,
19
(
11
), p.
115401
.10.1088/0957-0233/19/11/115401
18.
Bashforth
,
F.
, and
Adams
,
J.
,
1883
,
An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, With an Explanation of the Method of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of Such Drops
,
Cambridge University Press
,
Cambridge, MA
.
19.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.10.1115/1.4000485
20.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2008
, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls. Part II—Time-Resolved Flow Physics
,” ASME Turbo Expo, Berlin, June 9–13,
ASME
Paper No. GT2008-50470. 10.1115/GT2008-50470
21.
Moore
,
J.
,
1973
, “
A Wake and an Eddy in a Rotating, Radial-Flow Passage—Part 1: Experimental Observations
,”
ASME J. Eng. Power
,
95
(
3
), pp.
205
212
.10.1115/1.3445724
22.
Greitzer
,
E. M.
,
Tan
,
C.
, and
Graf
,
M.
,
2004
,
Internal Flow, Concepts and Applications
,
1st ed.
,
Cambridge University Press
,
Cambridge
, MA.
You do not currently have access to this content.