In computational fluid dynamics (CFD), it is possible to identify namely two uncertainties: epistemic, related to the turbulence model, and aleatoric, representing the random-unknown conditions such as the boundary values and or geometrical variations. In the field of epistemic uncertainty, large eddy simulation (LES and DES) is the state of the art in terms of turbulence closures to predict the heat transfer in internal channels. The problem is still unresolved for the stochastic variations and how to include these effects in the LES studies. In this paper, for the first time in literature, a stochastic approach is proposed to include these variations in LES. By using a classical uncertainty quantification approach, the probabilistic collocation method is coupled to numerical large eddy simulation (NLES) in a duct with pin fins. The Reynolds number has been chosen as a stochastic variable with a normal distribution. The Reynolds number is representative of the uncertainties associated with the operating conditions, i.e., velocity and density, and geometrical variations such as the pin fin diameter. This work shows that assuming a Gaussian distribution for the Reynolds number of ±25%, it is possible to define the probability to achieve a specified heat loading under stochastic conditions, which can affect the component life by more than 100%. The same method, applied to a steady RANS, generates a different level of uncertainty. New methods have been proposed based on the different level of aleatoric uncertainties which provides information on the epistemic uncertainty. This proves, for the first time, that the uncertainties related to the unknown conditions, aleatoric, and those related to the physical model, epistemic, are strongly interconnected. This result, which is idealized for this specific issue, can be extrapolated, and has direct consequences in uncertainty quantification science and not only in the gas turbine world.

References

References
1.
Kassinos
,
S. C.
,
Alnger
,
A. C.
,
Iaccarino
,
G.
, and
Moin
,
P.
,
2007
,
Complex Effects in Large Eddy Simulation
,
Springer
,
New York
.
2.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large-Eddy Simulations of Leading Edge Film Cooling: Analysis of Flow Structures, Effectiveness, and Heat Transfer Coefficient
,”
Int. J. Heat Fluid Flow
,
29
(1)
, pp.
1
17
.10.1016/j.ijheatfluidflow.2007.05.001
3.
Tafti
,
D. K.
,
Zhang
,
X.
,
Huang
,
W.
, and
Wang
,
G.
,
2000
, “
Large-Eddy Simulations of Flow and Heat Transfer in Complex Three-Dimensional Multilouvered Fins
,”
ACRC Tech. Report Air Conditioning and Refrigeration Center
, Report No. TR-165.
4.
Iaccarino
,
G.
,
2008
,
Quantification of Uncertainty in Flow Simulations Using Probabilistic Methods
,
(VKI Lectures Series), von Karman Institute
,
Rhode-St-Genèse, Belgium
.
5.
Walters
,
R. W.
, and
Huyse
,
L.
,
2002
, “
Uncertainty Analysis for Fluid Mechanics With Application
,” NASA/CR Report No. 2002-211449.
6.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2010
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(1)
, pp.
362
368
.10.1016/j.compfluid.2010.11.031
7.
Montomoli
,
F.
,
Massini
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2012
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019.
10.1115/1.4003287
8.
D’Ammaro
,
A.
, and
Montomoli
,
F.
,
2011
, “
Geometrical Uncertainty and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.10.1016/j.compfluid.2012.10.021
9.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2—LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.10.1016/j.paerosci.2011.07.002
10.
Tatang
,
M. A.
,
1995
, “
Direct Incorporation of Uncertainty in Chemical and Environmental Engineering System
,” Ph.D. thesis, MIT, Cambridge, MA.
11.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
12.
Ames
,
F. E.
, and
Dvorak
,
L. A.
,
2006
, “
Turbulent Transport in Pin Fin Arrays: Experimental Data and Predictions
,”
ASME J. Turbomach.
,
128
(1)
, pp.
71
81
.
10.1115/1.2098792
13.
Ames
,
F. E.
,
Nordquist
,
C. A.
, and
Klennert
,
L. A.
,
2007
, “
Endwall Heat Transfer Measurements in a Staggered Pin Fin Array With an Adiabatic Pin
,”
Proceedings of the GT 2007 ASME Turbo Expo
, Montreal, Canada, May 14–17,
ASME
Paper No. GT2007-27432. 10.1115/GT2007-27432
14.
Delibra
,
G.
,
Borello
,
D.
,
Hanjalic
,
K.
, and
Rispoli
,
F.
,
2010
, “
An LES Insight Into Convective Mechanism of Heat Transfer in a Wall-Bounded Pin Matrix
,”
Proceedings of the International Heat Transfer Conference (IHTC14)
, Washington, DC, Aug. 8–13,
ASME
Paper No. IHTC14-23205. 10.1115/IHTC14-23205
15.
Delibra
,
G.
,
Hanjalic
,
K.
,
Borello
,
D.
, and
Rispoli
F.
,
2009
, “
Vortex Structures and Heat Transfer in a Wall-Bounded Pin Matrix: LES With a RANS Wall-Treatment
,”
Int. J. Heat Fluid Flow
,
31
(5)
, pp.
740
753
.10.1016/j.ijheatfluidflow.2010.03.004
16.
Delibra
,
G.
,
Borello
,
D.
,
Hanjalic
,
K.
, and
Rispoli
,
F.
,
2009
, “
URANS of Flow and Endwall Heat Transfer in a Pinned Passage Relevant to Gas-Turbine Blade Cooling
,”
Int. J. Heat Fluid Flow
,
30
(3)
, pp.
549
560
.10.1016/j.ijheatfluidflow.2009.03.015
17.
Simoneau
,
R. J.
, and
Van Fossen
,
G. J., Jr.
,
1984
, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
(1)
, pp.
183
190
.10.1115/1.3246657
18.
Adami
,
P.
,
Martelli
,
F.
, and
Michelassi
,
V.
,
2000
, “
Three Dimensional Investigations for Axial Turbines by an Implicit Unstructured Multi-Block Flow Solver
,”
Proceedings of the ASME Turbo Expo 2000
, Munich, Germany, ASME Paper No. GT2000-0636.
19.
Montomoli
,
F.
,
Adami
,
P.
, and
Martelli
,
F.
,
2009
, “
A Finite-Volume Method for the Conjugate Heat Transfer in Film Cooling Devices
,”
J. Power Energy
,
223
(A
2
), pp.
191
200
.10.1243/09576509JPE640
20.
Salvadori
,
S.
,
Adami
,
P.
, and
Martelli
,
F.
,
2011
, “
On the Implementation of a Phase Lag Approach for Multi-Row Simulations
,”
Proceedings of the 10th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows
, Brussels, Belgium, July 4–7, Paper No. ISAIF10-063.
21.
Salvadori
,
S.
,
Bernardini
,
C.
,
Adami
,
P.
, and
Martelli
,
F.
,
2009
, “
Turbulence and Transition Modelling in Transonic Turbine Stage
,”
Proceedings of the 19th ISABE Conference
, Montreal, Canada, September 7–11.
22.
Bernardini
,
C.
,
Carnevale
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2011
, “
On the Assessment of an Unstructured Finite-Volume DES/LES Solver for Turbomachinery Application
,”
WSEAS Trans. Fluid Mech.
,
6
(
3
), pp.
160
173
.
23.
Roe
,
P. L.
,
1986
, “
Characteristic-Based Scheme for the Euler Equations
,”
Ann. Rev. Fluid Mech.
,
18
, pp.
337
365
.10.1146/annurev.fl.18.010186.002005
24.
Anderson
,
W. K.
, and
Bonhaus
,
D. L.
,
1994
, “
An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids
,”
Comput. Fluids
,
23
(
1
), pp.
1
21
.10.1016/0045-7930(94)90023-X
25.
Wilcox
,
D. C.
,
1993
,
Turbulence Modelling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
26.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flow
,” NASA Technical Memorandum 1992, Technical Report No. 103975.
27.
Dahlquist
,
G.
, and
Bjork
,
A.
,
1974
,
Numerical Methods
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
28.
Calvo
,
M.
,
Franco
,
J. M.
, and
Randez
,
L. A.
,
2004
, “
A New Minimum Storage Runge-Kutta Scheme for Computational Acoustics
,”
J. Comput. Phys.
,
201
(1)
, pp.
1
12
.10.1016/j.jcp.2004.05.012
29.
Thornber
,
B.
,
Mosedale
,
A.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R. J. R.
,
2008
, “
An Improved Reconstruction Method for Compressible Flows With Low Mach Number Features
,”
J. Comput. Phys.
,
227
, pp.
4873
4894
.10.1016/j.jcp.2008.01.036
30.
Mary
,
I.
, and
Sagaut
,
P.
,
2002
, “
Large Eddy Simulation of Flow Around an Airfoil Near Stall
,”
AIAA J.
,
40
(
6
), pp.
1139
1145
.10.2514/2.1763
31.
Garnier
,
E.
,
Mossi
,
M.
,
Sagaut
,
P.
, and
Davile
,
M.
,
1999
, “
On the Use of Shock-Capturing Schemes for Large-Eddy Simulation
,”
J. Comput. Phys.
,
153
(2)
, pp.
272
311
.10.1006/jcph.1999.6268
32.
Belardini
,
E.
,
Adami
,
P.
, and
Martelli
,
F.
,
2001
,
Development of an Unsteady Parallel Approach for 3D Stator-Rotor Interaction
,
Science and Supercomputing at CINECA
,
Casalecchio di Reno
,
Bologna, Italy
,, pp.
338
355
.
33.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Argumentation of Internal Convection Over Pins in Staggered Pin-Fin Arrays
,”
ASME J. Turbomach.
,
127
, pp.
183
190
.10.1115/1.1811090
34.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Methods Approach
,
Princeton University Press
,
Princeton, NJ
.
35.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(6)
, pp.
1121
1128
.10.1002/aic.690180606
You do not currently have access to this content.