Recent advances in computational power have made conjugate heat transfer simulations of fully conducting, film cooled turbine components feasible. However, experimental data available with which to validate conjugate heat transfer simulations is limited. This paper presents experimental measurements of external surface temperature on the suction side of a scaled up, fully conducting, cooled gas turbine vane. The experimental model utilizes the matched Bi method, which produces nondimensional surface temperature measurements that are representative of engine conditions. Adiabatic effectiveness values were measured on an identical near adiabatic vane with an identical geometry and cooling configuration. In addition to providing a valuable data set for computational code validation, the data shows the effect of film cooling on the surface temperature of a film cooled part. As expected, in nearly all instances, the addition of film cooling was seen to decrease the overall surface temperature. However, due to the effect of film injection causing early boundary layer transition, film cooling at a high momentum flux ratio was shown to actually increase surface temperature over 0.35 < s/C < 0.45.

References

References
1.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2010
, “
Use of the Adiabatic Wall Temperature in Film Cooling to Predict Wall Heat Flux and Temperature
,”
ASME
Paper No. GT2008-51424. 10.1115/GT2008-51424
2.
Bohn
,
D. E.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369. 10.1115/GT2003-38369
3.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2006
, “
Conjugate Calculations for a Film-Cooled Blade Under Different Operating Conditions
,”
ASME
Paper No. GT2004-53719. 10.1115/GT2004-53719
4.
Kusterer
,
K.
,
Hagedorn
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2006
, “
Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique
,”
ASME J. Turbomach.
,
128
, pp.
572
578
.10.1115/1.2183314
5.
Na
,
S.
,
Williams
,
B.
,
Dennis
,
R. A.
,
Bryden
,
K. M.
,
Shih
,
T. I.-P.
,
2007
, “
Internal Film Cooling of a Flat Plate With Conjugate Heat Transfer
,”
ASME
Paper No. GT2007-27599. 10.1115/GT2007-27599
6.
Shih
,
T. I.-P.
,
Chi
,
X.
,
Bryden
,
K. M.
,
Alsup
,
C.
, and
Dennis
,
R. A.
,
2009
, “
Effect of Biot Number on Temperature and Heat-Flux Distributions in a TBC-Coated Flat Plate Cooled by Rib-Enhanced Internal Cooling
,”
ASME
Paper No. GT2009-59726. 10.1115/GT2009-59726
7.
Na
,
S.
,
Dennis
,
R. A.
,
Alsup
,
C.
,
Bryden
,
K. M.
, and
Shih
,
T. I.-P.
,
2009
, “
Effect of Hot-Gas Composition on Temperature Distribution in a Flat Plate Cooled by Internal and Film Cooling
,”
ASME
Paper No. GT2009-59727. 10.1115/GT2009-59727
8.
Hylton
,
L. D.
,
Milhec
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes
,” NASA CR Report No. 168015.
9.
Turner
,
E. R.
,
Wilson
,
M. D.
,
Hylton
,
L. D.
, and
Kaufman
,
R. M.
,
1985
, “
Analytical and Experimental Heat Transfer Distributions With Leading Edge Showerhead Film Cooling
,” NASA CR Report No. 174827.
10.
Hylton
,
L. D.
,
Nirmalan
,
V.
,
Sultanian
,
B. K.
, and
Kaufman
,
R. M.
,
1988
, “
The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer
,” NASA CR Report No. 182133.
11.
Sweeney
,
P. C.
and
Rhodes
,
J.F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(1)
,
pp 170
177
.10.1115/1.555438
12.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998. 10.1115/GT2004-53998
13.
Mouzon
,
B. D.
,
Terrel
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002. 10.1115/GT2005-69002
14.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2010
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane
,”
ASME J. Turbomach.
,
134
(6)
, p.
061003
.10.1115/1.4006280
15.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Experimental and Computational Measurements for an Internally Cooled Simulated Gas Turbine Vane With 90 Degree Rib Turbulators
,”
ASME J. Turbomach.
,
134
, p.
061005
.10.1115/1.4006282
16.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
,
Tolpadi
,
A. K.
,
2012
, “
Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane
,”
ASME J. Turbomach
,
134
, p.
061004
.10.1115/1.4006281
17.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
, pp.
231
238
.10.1115/1.1343457
18.
Thole
,
K. A.
,
Sinha
,
A.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1992
, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application
,”
Rotating Machinery Transport Phenomena
,
J. H.
Kim
and
W. J.
Wang
, eds.,
Hemisphere
,
New York
, pp.
69
85
.
19.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
, pp.
476
481
.10.1115/1.3446382
20.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1990
, “
The Influence of Curvature on Film Cooling Performance
,” ASME Paper No. 90-GT-10.
21.
Waye
,
S. K.
,
2005
, “
Film Cooling Effectiveness of Suction Side Axial Holes, Compound Angle Holes, and Axial Holes Embedded Within an Overlying Transverse Trench
,” M.S. thesis, The University of Texas at Austin, Austin, TX.
22.
Balduaf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,”
ASME
Paper No. GT2002-30180. 10.1115/GT2002-30180
23.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
,
2000
, “
Film Cooling on a Convex Surface With Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2973
2987
.10.1016/S0017-9310(99)00346-4
24.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
, pp.
547
554
.10.1115/1.1580523
25.
Harrison
,
K. L.
,
Dorrington
,
J. R.
,
Dees
,
J. E.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
,
2007
, “
Turbine Airfoil Net Heat Flux Reduction With Cylindrical Holes Embedded in a Transverse Trench
,”
ASME
Paper No. GT2007-27996. 10.1115/GT2007-27996
26.
Dees
,
J. E.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
,
2010
, “
Heat Transfer Augmentation Downstream of Rows of Various Dimple Geometries on the Suction Side of a Gas Turbine Airfoil
,”
ASME J. Turbomach.
,
132
, p.
031010
.10.1115/1.3149284
27.
Johnson
,
R.
,
Maikell
,
J.
, and
Bogard
,
D.
,
2009
, “
Experimental Study of the Effects of an Oscillating Approach Flow on Overall Cooling Performance of a Simulated Turbine Blade Leading Edge
,”
ASME
Paper No. GT2009-60290. 10.1115/GT2009-60290
You do not currently have access to this content.