This two-part paper addresses the design of a U-bend for serpentine internal cooling channels optimized for minimal pressure loss. The total pressure loss for the flow in a U-bend is a critical design parameter, as it augments the pressure required at the inlet of the cooling system, resulting in a lower global efficiency. In this first part of the paper, the design methodology of the cooling channel is presented. The minimization of the total pressure loss is achieved by means of a numerical optimization method that uses a metamodel-assisted differential evolution algorithm in combination with an incompressible Navier–Stokes solver. The profiles of the internal and external side of the bend are parameterized using piece-wise Bezier curves. This allows for a wide variety of shapes, respecting the manufacturability constraints of the design. The pressure loss is computed by the Navier–Stokes solver, which is based on a two-equation turbulence model and is available from the open source software OpenFOAM. The numerical method predicts an improvement of 36% in total pressure drop with respect to a circular U-bend, mainly due to the reduction of the separated flow region along the internal side of the bend. The resulting design is subjected to experimental validation, presented in Part II of the paper.

References

References
1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
2.
Weigand
,
B.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2006
, “
Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
179
193
.10.1111/j.1749-6632.2001.tb05851.x
3.
Humphrey
,
J. A. C.
,
Whitelaw
,
J. H.
, and
Yee
,
G.
,
1981
, “
Turbulent Flow in a Square Duct With Strong Curvature
,”
J. Fluid Mech.
,
103
, pp.
443
463
.10.1017/S0022112081001419
4.
Chang
,
S. M.
,
Humphrey
,
J. A. C.
, and
Modavi
,
A.
,
1983
, “
Turbulent Flow in a Strongly Curved U-Bend and Downstream Tangent of Square Cross-Sections
,”
PCH, PhysicoChem. Hydrodyn.
,
4
, pp.
243
269
.
5.
Monson
,
D. J.
, and
Seegmiller
,
H. L.
,
1992
, “
An Experimental Investigation of Subsonic Flow in a Two-Dimensional U-Duct
,” NASA Report No. TM-103931.
6.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H. H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
, pp.
590
596
.10.1115/1.2836706
7.
Liou
,
T.-M.
, and
Chen
,
C.-C.
,
1999
, “
LDV Study of Developing Flow Through a Smooth Duct With a 180 Deg Straight-Corner Turn
,”
ASME J. Turbomach.
,
121
(
1
), pp.
167
174
.10.1115/1.2841228
8.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J.-C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90 Deg Ribbed Walls
,”
Int. J. Heat Mass Trans.
,
45
, pp.
4809
4822
.10.1016/S0017-9310(02)00192-8
9.
Schabacker
,
J.
,
Boelcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 Deg Bend
,” ASME Paper No. 98-GT-544.
10.
Iacovides
,
H.
, and
Launder
,
B. E.
,
1996
, “
Computational Fluid Dynamics Applied to Internal Gas-Turbine Blade Cooling: A Review
,”
Int. J. Heat Fluid Flow
,
16
, pp.
454
470
.10.1016/0142-727X(95)00072-X
11.
Lucci
,
J. M.
,
Amano
,
R. S.
, and
Guntur
,
K.
,
2007
, “
Turbulent Flow and Heat Transfer in Variable Geometry U-Bend Blade Cooling Passage
,”
ASME
Paper No. GT2007-27120.10.1115/GT2007-27120
12.
Schüler
,
M.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2010
, “
Numerical Investigations of Pressure Loss and Heat Transfer in a 180 Deg Bend of a Ribbed Two-Pass Internal Cooling Channel With Engine-Similar Cross-Sections
,”
Proc. Inst. Mech. Eng., Part A
,
224
, pp.
349
361
.10.1243/09576509JPE831
13.
Bonhoff
,
B.
,
Tomm
,
U.
, and
Johnson
,
B. V.
,
1996
, “
Heat Transfer Predictions for U-Shaped Coolant Channels With Skewed Ribs and With Smooth Walls
,” ASME Paper No. 96-TA-7.
14.
Chen
,
H.-C.
,
Jang
,
Y.-J.
, and
Han
,
J.-C.
,
2003
, “
Computation of Heat Transfer in Rotating Two-Pass Square Channels by a Second-Moment Closure Model
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1603
1616
.10.1016/S0017-9310(99)00227-6
15.
Metzger
,
D. E.
,
Plevich
,
C. W.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
677
681
.10.1115/1.3239623
16.
Liou
,
T.-M.
,
Tzeng
,
Y.-Y.
, and
Chen
,
C.-C.
,
1999
, “
Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
, pp.
569
576
.10.1115/1.2841354
17.
Bonhoff
,
B.
,
Leusch
,
J.
, and
Johnson
,
B. V.
,
1999
, “
Predictions of Flow and Heat Transfer in Sharp 180-Deg Turns of Gas Turbine Coolant Channels With and Without Turning Vanes
,”
33rd National Heat Transfer Conference
, Albuquerque, NM, August 15–17.
18.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
, p.
021017
.10.1115/1.4000550
19.
Zehner
,
S.
,
Steinbrück
,
H.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2009
, “
The Ice Formation Method: A Natural Approach to Optimize Turbomachinery Components
,”
Int. J. Des. Nat.
,
3
, pp.
259
272
10.2495/D&NE-V3-N4-259-272.
20.
Namgoong
,
H.
,
Son
,
C.
, and
Ireland
,
P.
,
2008
, “
U-Bend Shaped Turbine Blade Cooling Passage Optimization
,”
AIAA
Paper No. ISSMO 2008-592610.2514/6.2008-5926.
21.
Coletti
,
F.
,
Verstraete
,
T.
,
Vanderwielen
,
T.
,
Bulle
,
J.
, and
Arts
,
T.
,
2011
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels: Part II—Experimental Validation
,”
ASME
Paper No. GT2011-4655510.1115/GT2011-46555.
22.
Pierret
,
S.
,
1999
, “
Designing Turbomachinery Blades by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm, and the Navier-Stokes Equations
,” Ph.D. thesis, Faculté Polytechnique de Mons, Mons, Belgium–von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
23.
Pierret
,
S.
, and
Van den Braembussche
,
R. A.
,
1999
, “
Turbomachinery Blade Design Using a Navier Stokes Solver and Artificial Neural Networks
,”
ASME J. Turbomach.
,
121
, pp.
326
332
.10.1115/1.2841318
24.
Verstraete
,
T.
, “
Multidisciplinary Turbomachinery Component Optimization Considering Performance, Stress, and Internal Heat Transfer
,”
Ph.D. thesis
, Universty of Ghent, Gent, Belgium–Von Karman Institute, Rhode-St-Genese, Belgium.
25.
Gambit Academic Research, Release 2.4.6, http://www.ansys.com
26.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
27.
OpenCFD Ltd., 2013, Open Foam, http://www.openfoam.com
28.
Holland
,
J. H.
,
1975
,
Adaption in Natural and Artificial Systems
,
University of Michigan Press
, Ann Arbor, MI.
29.
Rechenberg
,
I.
,
1973
,
Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution
,
Fommann-Holzboog
,
Stuttgart
.
30.
Price
,
K.
, and
Storn
,
N.
,
1997
, “
Differential Evolution
,”
Dr. Dobb's Journal
, April, pp.
18
24
.
31.
Verstraete
,
T.
,
2010
, “
CADO: A Computer Aided Design and Optimization Tool for Turbomachinery Applications
,”
Presented at 2nd Int. Conf. on Engineering Optimization
, Lisbon, Portugal, September 6–9.
32.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
, pp.
1246
1266
.10.2113/gsecongeo.58.8.1246
33.
Goldberger
,
A. S.
,
1962
, “
Best Linear Unbiased Prediction in the Generalized Linear Regression Model
,”
J. Am. Stat. Assoc.
,
57
(
298
), pp.
369
375
.10.1080/01621459.1962.10480665
34.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Mine Valuations and Allied Problems at the Witwatersrand
,” Ph.D. thesis, University of Witwatersrand, Johannesburg, South Africa.
35.
Goovaerts
,
P.
,
1997
,
Geostatistics for Natural Resources Evaluation
,
Oxford University Press
,
New York
.
36.
Journel
,
A. G.
, and
Huijbregts
,
C. J.
,
1978
,
Mining Geostatistics
,
Academic
,
New York
.
37.
Cressie
,
N. A. C.
,
1991
,
Statistics for Spatial Data
,
Wiley
,
New York
.
38.
Ripley
,
B. D.
,
1981
,
Spatial Statistics
,
Wiley
,
New York
.
39.
Stein
,
M. L.
,
1999
,
Interpolation of Spatial Data: Some Theory of Kriging
,
Springer-Verlag
,
New York
.
40.
Gano
,
S. E.
,
Renaud
,
J. E.
, and
Sanders
,
B.
,
2005
, “
Hybrid Variable Fidelity Optimization by Using a Kriging-Based Scaling Function
,”
AIAA J.
,
43
(
11
), pp.
2422
2430
.10.2514/1.12466
41.
Jeong
,
S.
,
Murayama
,
M.
, and
Yamamoto
,
K.
,
2005
, “
Efficient Optimization Design Method Using Kriging Model
,”
J. Aircr.
,
42
(
2
), pp.
413
420
.10.2514/1.6386
42.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J
,
43
(
4
), pp.
853
863
.10.2514/1.8650
43.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2004
, “
A Monte Carlo Simulation of the Kriging Model
,”
AIAA
Paper No. 2004-448310.2514/6.2004-4483.
44.
Simpson
,
T. W.
,
1998
, “
Comparison of Response Surface and Kriging Models in the Multidisciplinary Design of an Aerospike Nozzle
,” ICASE Report No. 98-16.
45.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
46.
Denison
,
D. G. T.
,
Holmes
,
C. C.
,
Mallick
,
B. K.
, and
Smith
,
A. F. M.
,
2002
,
Bayesian Methods for Nonlinear Classification and Regression
,
Wiley
,
New York
.
47.
Guinta
,
A. A.
, and
Watson
,
L. T.
,
1998
, “
A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models
,”
AIAA
Paper No. 98-475810.2514/6.1998-4758.
48.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
49.
Simpson
,
T. W.
,
Mauery
,
M. T.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Metamodels for Global Approximation in Simulation-Based Multi-Disciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.10.2514/2.1234
50.
Montgomery
,
D. C.
,
1997
,
Design and Analysis of Experiments
,
Wiley
,
New York
.
You do not currently have access to this content.