This paper describes experimental results from a research facility which experimentally models hot-gas ingress into the wheel-space of an axial turbine stage with an axial-clearance rim seal. Thermochromic liquid crystal (TLC) was used to determine the effect of ingestion on heat transfer to the rotating disk; as far as the authors are aware, this is the first time that the measured effects of ingestion on adiabatic temperature have been published. An adiabatic effectiveness for the rotor was defined, and this definition was used to determine when the effect of ingress was first experienced by the rotor. Concentration measurements on the stator were used to determine the sealing effectiveness of the rim seal, and transient heat transfer tests with heated sealing air were used to determine the adiabatic effectiveness of the rotor. The thermal buffer ratio, which is defined as the ratio of the sealing flow rate when ingress first occurs to that when it is first experienced by the rotor, was shown to depend on the turbulent flow parameter. The local Nusselt numbers, Nu, which were measured on the rotor, were significantly smaller than those for a free disk; they decreased as the sealing flow rate decreased and as the ingress correspondingly increased. The values of Nu and adiabatic effectiveness obtained in these experiments provide data for the validation of CFD codes but caution is needed if they (particularly the values of Nu) are to be extrapolated to engine conditions.

References

References
1.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems, Volume 1—Rotor Stator Systems
,
Research Studies Press Ltd
,
Taunton, UK
.
2.
Childs
,
P. R. N.
,
2010
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
3.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
,
113
(
1
), pp.
52
59
.10.1115/1.2927737
4.
Bunker
,
R. S.
,
Metzger
,
D. E.
, and
Wittig
,
S.
,
1992
, “
Local Heat Transfer in Turbine Disk Cavities: Part I—Rotor and Stator Cooling With Hub Injection of Coolant
,”
ASME J. Turbomach.
,
114
(
1
), pp.
211
220
.10.1115/1.2927988
5.
Bunker
,
R. S.
,
Metzger
,
D. E.
, and
Wittig
,
S.
,
1992
, “
Local Heat Transfer in Turbine Disk Cavities: Part II—Rotor Cooling With Radial Location Injection of Coolant
,”
ASME J. Turbomach.
,
114
(
1
), pp.
221
228
.10.1115/1.2927989
6.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 1: Calibration and Characteristics of Crystals
,”
Int. J. Heat Fluid Flow
,
30
, pp.
939
949
.10.1016/j.ijheatfluidflow.2009.04.007
7.
Kakade
,
V. U.
,
Lock
,
G. D.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Mayhew
,
J. E.
,
2009
, “
Accurate Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Application to a Rotating Disc
,”
Int. J. Heat Fluid Flow
,
30
, pp.
950
959
.10.1016/j.ijheatfluidflow.2009.04.005
8.
Roy
,
R. P.
,
Xu
,
G.
, and
Feng
,
J.
,
2001
, “
A Study of Convective Heat Transfer in a Model Rotor-Stator Disc Cavity
,”
ASME J. Turbomach.
,
123
, pp.
621
631
.10.1115/1.1371776
9.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals: Part 1—Externally-Induced Ingress
,”
ASME
Paper No. GT2011-45310.10.1115/GT2011-45310
10.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals: Part 2—Rotationally-Induced Ingress
,”
ASME
Paper No. GT2011-45313.10.1115/GT2011-45313
11.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals: Part 3—Single and Double Seals
,” ASME Paper No. GT2012-68493.
12.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
, p.
031005
.10.1115/1.4001177
13.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
, p.
031006
.10.1115/1.4001178
14.
Abe
,
T.
,
Kikuchi
,
J.
, and
Takeuchi
,
H.
,
1979
, “
An Investigation of Turbine Disk Cooling (Experimental Investigation and Observation of Hot Gas Flow Into a Wheel Space)
,”
Proceedings of the 13th CIMAC Congress
,
Vienna
, Paper No. GT30.
15.
Hamabe
,
K.
, and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor-Stator System With Nonaxisymmetric Main Flow
,” ASME Paper No. 92-GT-160.
16.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor–Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
, pp.
439
445
.10.1115/1.2929163
17.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
, pp.
505
512
.10.1115/1.1556411
18.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
, pp.
327
332
.10.1115/1.2928368
19.
Roy
,
R. P.
,
Xu
,
G.
, and
Feng
,
J.
,
2000
, “
Study of Main Stream Gas Ingestion in a Rotor-Stator Disc Cavity
,” AIAA Paper No. 2000-3372.
20.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2006-90453.10.1115/GT2006-90453
21.
Teuber
,
R.
,
Wilson
,
M.
,
Lock
,
G. D.
,
Owen
,
J. M.
,
Li
,
Y. S.
, and
Maltson
,
J. D.
,
2012
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,” ASME Paper No. GT2012-68490.
22.
Owen
,
J. M.
,
Pountney
,
O. J.
, and
Lock
,
G. D.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part II: Combined Ingress
,”
ASME J. Turbomach.
,
134
, p.
031013
.10.1115/1.4003071
23.
Owen
,
J. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
134
, p.
031012
.10.1115/1.4003070
24.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2011
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME
Paper No. GT2011-45139.10.1115/GT2011-45139
25.
Sangan
,
C. M.
,
2011
, “
Measurement of Ingress Through Gas Turbine Rim Seals
,” Ph.D. thesis,
University of Bath
,
Bath, UK
.
26.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
, pp.
969
986
.10.1088/0957-0233/11/7/313
27.
Baughn
,
J. W.
,
1995
, “
Liquid Crystal Methods for Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
,
16
, pp.
365
375
.10.1016/0142-727X(95)00042-O
28.
Syson
,
B. J.
,
Pilbrow
,
R. G.
, and
Owen
,
J. M.
,
1996
, “
Effect of Rotation on Temperature Response of Thermochromic Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
17
, pp.
491
499
.10.1016/0142-727X(96)00053-7
29.
Camci
,
C.
,
Glezer
,
B.
,
Owen
,
J. M.
,
Pilbrow
,
R. G.
, and
Syson
,
B. J.
,
1998
, “
Application of Thermochromic Liquid Crystal to Rotating Surfaces
,”
ASME J. Turbomach.
,
120
, pp.
100
103
.10.1115/1.2841369
30.
Chew
,
J. W.
, and
Rogers
,
R. H.
,
1988
, “
An Integral Method for the Calculation of Turbulent Forced Convection in a Rotating Cavity With Radial Outflow
,”
Int. J. Heat Fluid Flow
,
9
, pp.
37
48
.10.1016/0142-727X(88)90028-8
31.
Karabay
,
H.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2001
, “
Predictions of Effect of Swirl on Flow and Heat Transfer in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
22
, pp.
143
155
.10.1016/S0142-727X(00)00076-X
32.
Kármán
,
T. V.
,
1921
, “
Uber Laminare und Turbulente Reibung
,”
Z. Angew. Math. Mech.
,
1
, pp.
223
252
.10.1002/zamm.19210010311
33.
Holman
,
J. P.
,
1990
,
Heat Transfer
,
10th ed.
,
McGraw Hill
,
New York
.
34.
Yan
,
Y. Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
, pp.
29
35
.10.1016/S0142-727X(01)00125-4
35.
Pountney
,
O. J.
,
Cho
,
G.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2012
, “
Solutions of Fourier's Equation Appropriate for Experiments Using Thermochromic Liquid Crystal
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5908
5915
.10.1016/j.ijheatmasstransfer.2012.06.001
36.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
, pp.
256
263
.10.1016/j.ijheatfluidflow.2004.08.011
37.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2003
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
,
24
, pp.
14
22
.10.1016/S0142-727X(02)00206-0
You do not currently have access to this content.